NEET MDS Synopsis
Langerhans cell granulomatosis
General Pathology
Langerhans cell granulomatosis (histocytosis X)
a. A group of diseases that are caused by the proliferation of Langerhans’ cells (previously known as histocytes).
b. Most commonly causes bone lesions; however, other tissues can be affected.
c. Histologic findings include Langerhans’ cells containing Birbeck granules and eosinophils.
d. Three types:
(1) Letterer-Siwe disease—an acute, disseminated form that is fatal in infants.
(2) Hand-Schüller-Christian disease—a chronic, disseminated form that has a better prognosis than LettererSiwe disease. It usually presents
before the age of 5 and is characterized by a triad of symptoms:
(a) Bone lesions—found in skull, mandible (loose teeth).
(b) Exophthalmos.
(c) Diabetes insipidus.
(3) Eosinophilic granuloma of bone—a localized, least severe form of the three. Lesions may heal without treatment.
(a) Most commonly occurs in young adults.
(b) Lesions in the mandible may cause loose teeth.
IMMUNITY AND RESISTANCE TO INFECTION
General Pathology
IMMUNITY AND RESISTANCE TO INFECTION
Body's resistance to infection depends upon:
I. Defence mechanisms at surfaces and portals of entry.
II. Nonspecific or innate immunity
Ill. Specific immune response.
I. Surface Defence Mechanisms
1. Skin:
(i) Mechanical barrier of keratin and desquamation.
(ii) Resident commensal organisms
(iii)Acidity of sweat.
(iv) Unsaturated fatty acids of sebum
2. Oropharyngeal
(i)Resident flora
(ii) Saliva, rich in lysozyme, mucin and Immunoglobulins (lgA).
3. Gastrointestinal tract.-
(i) Gastric HCI
(ii) Commensal organisms in Intestine
(iii) Bile salts
(iv) IgA.
(v) Diarrhoeal expulsion of irritants.
4. Respiratory tract:
(i) Trapping in turbinates
(ii) Mucus trapping
(iii) Expulsion by coughing and sneezing.
(iv) Ciliary propulsion.
(V) Lysozymes and antibodies in secretion.
(vi) Phagocytosis by alveolar macrophages.
5. Urinary tract:
(i) Flushing action.
(ii) Acidity
(iii) Phagocytosis by urothelial cells.
6. Vagina.-
(i) Desquamation.
(ii) Acid barrier.
(iii) Doderlein's bacilli (Lactobacilli)
7. Conjunctiva:
Lysozymes and IgA in tears
II. Nonspecific or Innate Immunity
1. Genetic factors
Species: Guinea pig is very susceptible to tuberculosis.
Race: Negroes are more susceptible to tuberculosis than whites
Sickle cells (HbS-a genetic determined Haemoglobinopathy resistant to Malarial parasite.
2. Age Extremes of age are more susceptible.
3. Hormonal status. Low resistance in:
Diabetes Mellitus.
Increased corticosteroid levels.
Hypothyroidism
4. Phagocytosis. Infections can Occur in :
Qualitative or quantitative defects in neutrophils and monocytes.
Diseases of mononuclear phagocytic system (Reticuloendothelial cells-RES).
Overload blockade of RES.
5. Humoral factors
Lysozyme.
Opsonins.
Complement
Interferon (antiviral agent secreted by cells infected by virus)
III. The Specific Immune Response
Definition
The immune response comprises all the phenomenon resulting from specific interaction
of cells of the immune-system with antigen. As a consequence of this interaction cells
, appear that mediate cellular immune response as well cells that synthesis and secrete
immunoglobulins
Hence the immune response has 2 components.
1. Cell mediated immunity (CMI).
2:. Humoral immunity (antibodies)
(I) Macrophages. Constituent of the M. P. S. These engulf the antigenic material.
(i) Most of the engulfed antigen is destroyed to' prevent a high dose paralysis of the Immune competent cells.
(ii) Some of it persists in the macrophage, retaining immunogenecity for continued stimulus to the immune system.
(iii)The antigenic information is passed on to effectors cells. There are two proposed mechanisms for this:
(a) As messenger RNA with code for the specific antibody.
(b) As antigen-RNA complexes.
(2) Lymphocytes. There are 2 main classes recognized by surface characteristics.
(A) T-Lymyhocytes (thymus dependant) :- These are responsible for cellular immunity . On exposure to antigen
They transform to immunoblasts which divide to form the effectors cells.
They secrete lymphokines These are
Monocyte migration inhibition factor
Macrophage activation factor
Chemotactic factor
Mitogenic factor
Transfer factor
Lymphotoxin which kills target cell
Interferon.
Inflammatory factor which increases permeability. .
Some remain as 1onglived memory cell for a quicker recognition on re-exposure
They also modify immune response by other lymphocytes in the form of “T – helper cells “ and “T-suppressor” cells
They are responsible for graft rejection
(B) B-Lymphocytes (Bursa dependent). In birds the Bursa of Fabricious controls these cells. In man, its role is taken up by," gut associated lymphoid tissue)
(i) They are responsible for antibody synthesis. On stimulation they undergo blastic transformation and then differentiation to plasma cells, the site of immunoglobulin synthesis.
(ii) They also form memory cells. But these are probably short lived.
(C) In addition to T & B lymphocytes, there are some lymphocytes without the surface markers of either of them. These are 'null' cells-the-natural Killer (N,K.) cells and cells responsible for antibody dependent cellular-cytotoxicity.
(3) Plasma cells. These are the effectors cells of humoral immunity. They produce the immunoglobins, which are the effector molecules.
OCCLUSION AND DENTAL DEVELOPMENT-Stages-Mixed Dentition Period
Dental Anatomy
Permanent dentition period
-Maxillary / mandibular occlusal relationships are established when the last of the deciduous teeth are lost. The adult relationship of the first permanent molars is established at this time.
-Occlusal and proximal wear reduces crown height to the permanent dentition and the mesiodistal dimensions of the teeth
occlusal and proximal wear also changes the anatomy of teeth. As cusps are worn off, the occlusion can become virtually flat plane. -In the absence of rapid wear, overbite and overjet tend to remain stable.
-Mesio-distal jaw relationships tend to be stable,
With aging, the teeth change in color from off white to yellow. smoking and diet can accelerate staining or darkening of the teeth.
Gingival recession results in the incidence of more root caries . With gingival recession, some patients have sensitivity due to exposed dentin at the cemento-enamel junction.
Curve of Spee.
-The cusp tips and incisal edges align so that there is a smooth, linear curve when viewed from the lateral aspect. The mandibular curve of Spee is concave whereas the maxillary curve is convex.
-It was described by Von Spee as a 4" cylinder that engages the occlusal surfaces.
-It is called a compensating curve of the dental arch.
There is another: the Curve of Wilson. Clinically, it relates to the anterior overbite: the deeper the curve, the deeper the overbite.
Mycobacterium leprae
General Pathology
Mycobacterium leprae
- tuberculoid type has intact cellular immunity
- forms granulomas and kill the organisms (very few present).
- evokes a positive lepromin skin test
- localized skin lesions that lack symmetry
- nerve involvement (organisms invade Schwann cells) that dominates the clinical picture and leads to skin anesthesia, muscle atrophy and autoamputation.
- lepromatous leprosy patients lack cellular immunity
- no granulomas
- organisms readily identified
- negative lepromin skin test
- Bacteremia disseminates to cooler areas like the digits.
- symmetrical, skin lesions that produce the classic leonine facies; biopsy reveals grentz zone in superficial dermis and then organisms in macrophages.
- neural involvement is a late feature of the disease.
- lepromin skin test is to determine host immunity; not a diagnostic test.
- treatment: dapsone + rifampin
Aminoglycoside
Pharmacology
Aminoglycoside
Aminoglycosides are a group of antibiotics that are effective against certain types of bacteria. They include amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, and tobramycin. Those which are derived from Streptomyces species
Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Streptomycin was the first effective drug in the treatment of tuberculosis, though the role of aminoglycosides such as streptomycin and amikacin have been eclipsed (because of their toxicity and inconvenient route of administration) except for multiple drug resistant strains.
Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis.
Because of their potential for ototoxicity and renal toxicity, aminoglycosides are administered in doses based on body weight. Blood drug levels and creatinine are monitored during the course of therapy.
There is no oral form of these antibiotics: they are generally administered intravenously, though some are used in topical preparations used on wounds.
Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses.
CNS PROTECTION
Physiology
CNS PROTECTION
- Bones of the Skull Frontal, Temporal, Parietal, Sphenoid, Occipital
- Cranial Meninges Dura mater, Arachnoid Space, Pia mater
- Cerebrospinal Fluid
Secreted by Chroid Plexi in Ventricles
Circulation through ventricles and central canal
Lateral and Median apertures from the 4th ventricle into the subarachnoid space
Arachnoid villi of the superior sagittal sinus return CSF to the venous circulation
Hydrocephalic Condition, blockage of the mesencephalic aqueduct, backup of CSF, Insertion of a shunt to drain the excess CSF
GENETIC VARIATION
General Microbiology
GENETIC VARIATION
Two methods are known for genetic variation in bacteria: mutation and gene transfer.
Mutation : Any change in the sequence of bases of DNA, irrespective of detectable changes in the cell phenotype. Mutations may be spontaneous or induced by various agents which are known as mutagens.
Spontaneous Mutations: Arise from enzymatic imperfections during DNA replications or with transient insertions of transposable elements.
Induced Mutations: Mutation by physical and chemical mutagens.
Physical mutagens ultraviolet rays and high-energy ionizing radiations. The primary effect of UV rays on DNA is the production of pyrmidine dimers whereas ionizing radiations cause single_stranded breaks the DNA molecules.
Chemical mutagens :Affecting nucleotide sequence
(i) Agents which cause error in base pairing (e.g. nitrous acid and alkylating agents).
(ii) Agents which cause errors in DNA replication (e.g. acridine dyes such as acridine orange and profiavine).
(iii) Base analogs which are incorporated into DNA and cause replication errors (e.g. 5-bromouracil)
Gene Transfer
Transformation: Uptake of naked DNA
Transduction : Infection by a nonlethal bacteriophage
Conjugation : Mating between cells in contact
Protoplast fusion
Transformation: Gene transfer by soluble DNA is called as transformation. it requires that DNA be absorbed by the cell, gain entrance to the cytoplasm and undergo recombination with the host genome.
Artificial Transformation(transfection) :Some of the bacteria (such as Escherichia coli) resist transformation until they are subjected to some special treatment such as CaCl2 to make the bacterium more permeable to DNA. Such modified cells can also take up intact double stranded DNA extracted from viruses or in the shape of plasmids. Though the process is same as transformation, it is 9 as transfection because it results in infection by an abnormal route
Transduction :The type of gene transfer in which the DNA of one bacterial cell is introduced into another bacterial cell by viral infection is known as transduction. This introduces only a small fragment of DNA. Because the DNA is protected from damage by the surrounding phage coat, transduction is an easier to perform and more reproducible process than transduction. ,
Two types of transduction are known.
- Generalized transduction When a bacteriophage picks up fragments of host DNA at random and can transfer any genes
- Specialised transduction: phage DNA that has been integrated into the host chromosome is excised along with a few adjacent genes, which the phage can then transfer.
After entry into the host cell, the phage DNA gets incorporated into the host chromosome in such a way that the two genomes are linearly contiguous (lysogeny). The phage genome in this stage is known as prophage, The host cell acquires a significant new property as a consequence of lysogeny because it becomes immune to infection by homologous phage. This is hence called as lysogenic conversion and endow toxigenicity to Corynebacterium diphtheriae
Abortive Transduction :phage DNA fails to integrated into the host chromosome, the process is called as abortive transduction The phage DNA does not replicate and along with binary fission Of the host it goes into one of the daughter cells.
Conjugation :This is defined as the transfer of DNA directly from on bacterial. .cell to another by a mechanism that requires cell-to-cell contact.
The capacity to donate DNA depends upon the possession of the fertility (F) factor. The F pili also retard male-male union. Concomitant with effective male-female pair formation, the circular DNA bearing the F factor is converted to a linear form that is transferred to the female cell in a sequential manner. DNA replication occurs in the male cell and the newly synthesized, semiconserved DNA molecule remains in the male. This ensures postmating characters of the male.
Conjugation in Different Bacteria: Unusual form of plasmid transfer, called phase mediated conjugation has been reported to occur with some strains of Staphylococcus aureus.
Protoplast Fusion: Also called as genetic transfusion. Under osmotically buffered Conditions protoplast fusion takes place by joining of cell membrane and generation of cytoplasmic bridges through which genetic material can be exchanged.
Transposons: Transposons Tn are DNA sequences which are incapable of autonomous existence and which transpose blocks of genetic material back and forth between cell Chromosome and smaller replicons such as plasmids. insertion sequences (IS ) are another similar group of nucleotides which can move from one chromosome to another
Genetic material. IS and Tn are collectively also known as transposable elements or Jumping genes. These are now recognised to play an important role in bringing about vanous types of mutations.
Finish lines
ProsthodonticsFinish lines are the marginal configurations at the
interface between a restoration and the tooth structure that are intended to be
refined and polished to a smooth contour. In prosthodontics, they are crucial
for the proper adaptation and seating of restorations, as well as for
maintaining the health of the surrounding soft and hard tissues. Finish lines
can be classified in several ways, such as by their location, purpose, and the
burs used to create them. Here's an overview:
1. Classification by Width:
a. Narrow Finish Lines: These are typically 0.5mm wide or less
and are often used in areas where the restoration margin is tight against the
tooth structure, such as with metal-ceramic restorations or in cases with
minimal tooth preparation.
b. Moderate Finish Lines: These are 0.5-1.5mm wide and are
commonly used for most types of restorations, providing adequate space for a
good margin and seal.
c. Wide Finish Lines: These are 1.5mm wide or more and are
often used in areas with less than ideal tooth preparation or when a wider
margin is necessary for material manipulation or when there is a concern about
the stability of the restoration.
2. Classification by Location and Application:
a. Shoulder Finish Line: This finish line is at a 90-degree
angle to the tooth structure and is often used for metal-ceramic and all-ceramic
restorations. It provides good support and can be easily visualized and
finished.
b. Knife-Edge Finish Line: This is a very thin finish line that
is beveled at an approximately 45-degree angle to the tooth structure. It is
typically used for all-ceramic restorations and is designed to mimic the natural
tooth contour, providing excellent esthetics.
c. Feather Edge Finish Line: Also known as a chamfer, this
finish line is beveled at approximately 90-degrees to the tooth structure. It is
used in situations where the tooth structure is not ideal for a shoulder margin,
and it helps to distribute the forces evenly and reduce the risk of tooth
fracture.
d. Butt-Joint Finish Line: This is when the restoration margin
is placed directly against the tooth structure without any bevel. It is often
used in the lingual areas of anterior teeth and in situations where there is
minimal space for a margin.
3. Classification by Function:
a. Functional Finish Lines: These are placed where the restoration will be
subject to significant occlusal or functional stresses. They are designed to
enhance the durability of the restoration and are usually placed at or slightly
below the height of the free gingival margin.
b. Esthetic Finish Lines: These are placed to achieve a high level of cosmetic
appeal and are often located in the facial or incisal areas of anterior teeth.
They are typically knife-edge margins that are highly polished.
Advantages and Disadvantages:
- Narrow finish lines can be more challenging to clean and may be less visible,
potentially leading to better esthetics and less irritation of the surrounding
tissues. However, they may also increase the risk of recurrent decay and are
more difficult to achieve a good margin seal with.
- Moderate finish lines are easier to clean and provide a better margin seal,
but may be more visible and can potentially lead to increased tooth sensitivity.
- Wide finish lines are more forgiving for marginal adaptation and are easier to
clean, but they can be less esthetic and may require more tooth reduction.
Burs Used:
- The choice of bur for creating finish lines depends on the restoration
material and the desired margin design. For example:
a. Diamond Burs: Typically used for creating finish lines on natural tooth
structures, especially for knife-edge margins on ceramic restorations, due to
their ability to produce a smooth and precise finish.
b. Carbide Burs: Often used for metal-ceramic restorations, as they are less
likely to chip the ceramic material.
c. Zirconia-Specific Burs: Used for zirconia restorations to prevent chipping or
fracture of the zirconia material.
When creating finish lines, the dentist must consider the patient's oral health,
the type of restoration, the location in the mouth, and the desired functional
and esthetic outcomes. The correct selection and preparation of the finish line
are essential for the longevity and success of the restoration.