📖 Dental Materials
Dental Amalgam - Applications/Use
Dental MaterialsApplications/Use
- Load -bearing restorations for posterior teeth (class I, II)
- Pinned restorations
- Buildups or cores for cast restorations
- Retrograde canal filling material
(1) Alloy. An alloy is a solid mixture of two or more metals. It is possible to produce a material in which the desirable properties of each constituent are retained or even enhanced, while the less desirable properties are reduced or eliminated.
(2) Amalgam. When one of the metals in an alloy mixture is mercury, an amalgam is formed. A dental amalgam is a combination of mercury with a specially prepared silver alloy, which is used as a restorative material.
(3) Mercury. Mercury is a silver-white, poisonous, metallic element that is liquid at room temperature
Mechanical properties
Dental MaterialsMechanical properties
1. Resolution of forces
Uniaxial (one-dimensional) forces-compression, tension, and shear
Complex forces-torsion, flexion. And diametral
2. Normalization of forces and deformatations
Stress
Applied force (or material’s resistance to force) per unit area
Stress-force/area (MN/m2)
Strain
Change in length per unit of length because of force
Strain-(L- Lo)/(Lo); dimensionless units
3. Stress-strain diagrams
Plot of stress (vertical) versus strain (horizontal)
- Allows convenient comparison of materials
- Different curves for compression, tension, and shear
- Curves depend on rate of testing and temperature
4. Analysis of curves
- Elastic behavior
- Initial response to stress is elastic strain
- Elastic modulus-slope of first part of curve and represents stiffness of material or the resistance to deformation under force
- Elastic limit (proportional limit)- stress above which the material no longer behaves totally elastically
- Yield strength-stress that is an estimate of the elastic limit at 0.002 permanent strain
- Hardness-value on a relative scale that estimates the elastic limit in terms of a material’s resistance to indentation (Knoop hardness scale, Diamond pyramid, Brinnell, Rockwell hardness scale, Shore A hardness scale, Mohs hardness scale
- Resilience-area under the stress strain curve up to the elastic limit (and it estimates the total elastic energy that can be absorbed before the onset of plastic deformation)
- Elastic and plastic behavior
- Beyond the stress level of the elastic limit, there is a combination of elastic and plastic strain
- Ultimate strength-highest stress reached before fracture; the ultimate compressive strength is greater than the ultimate shear strength and the ultimate tensile strength
- Elongation (percent elongation)- percent change in length up to the point of fracture = strain x 100%
- Brittle materials-<5% elongation at fracture
- Ductile materials->5% elongation at fracture
- Toughness-area under the stress strain curve up to the point of fracture (it estimates the total energy absorbed up to fracture)
- Time-dependent behavior
the faster a stress is applied, the more likely a material is to store the energy elastically and not plastically
- Creep-strain relaxation
- Stress relaxation
COMPOSITE RESINS -Manipulation
Dental MaterialsManipulation
Selection
o Microfilled composites or hybrids for anterior class III, IV, V
o Hybrids or midifills for posterior class I, II, III, V
Conditioning of enamel and / or dentin
Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize
Mixing (if required)--> mix two pastes for 20 to 30 seconds
o Self-cured composite-working time is 60 to 120 seconds after mixing
o Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o Dual-cured composite-working time is > 10 minutes
o Two-stage cured composite-working time is >5 minutes
Placement
use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness
Dental Solders
Dental MaterialsDental Solders
Applications-bridges and orthodontic appliances
Terms
Soldering -joining operation using filler metal that melts below 500° C
Brazing -joining operation using filler metal that melts above 500°C
Welding-melting and alloying of pieces to be joined
Fluxing
-Oxidative cleaning of area to be soldered
- Oxygen scavenging to prevent oxidation of alloy being soldered
16- 650 -- 650 fineness solder to be used with 16-karat alloys; fineness refers to the gold content
Classification
a. Gold solders-bridges
b. Silver solders-gold-substitute bridges and orthodontic alloys
Structure of gold solders
Composition-lower gold content than of alloys being soldered
Manipulation-solder must melt below melting temperature of alloy
Properties
1. Physical-similar to alloys being joined
2. Chemical-more prone to chemical and electrochemical corrosion
3. Mechanical-similar to alloy being joined
4. Biologic-similar to alloys being joined
