Talk to us?

NEET MDS Synopsis - Lecture Notes

📖 Dental Materials

Showing page 1 of 22 (86 total records)

Dental Amalgam - Applications/Use

Dental Materials

Applications/Use

  • Load -bearing restorations for posterior  teeth  (class I, II)
  • Pinned restorations
  • Buildups or cores for cast restorations
  • Retrograde canal filling material

 

 (1) Alloy. An alloy is a solid mixture of two or more metals. It is possible to produce a material in which the desirable properties of each constituent are retained or even enhanced, while the less desirable properties are reduced or eliminated.

(2) Amalgam. When one of the metals in an alloy mixture is mercury, an amalgam is formed. A dental amalgam is a combination of mercury with a specially prepared silver alloy, which is used as a restorative material.

(3) Mercury. Mercury is a silver-white, poisonous, metallic element that is liquid at room temperature

Mechanical properties

Dental Materials

Mechanical properties

1.  Resolution of forces

Uniaxial (one-dimensional) forces-compression, tension, and shear

Complex forces-torsion, flexion. And diametral

2. Normalization of forces and deformatations

Stress

 Applied force (or material’s resistance to force) per unit area

Stress-force/area (MN/m2)

Strain

Change in length per unit of length because of force

Strain-(L- Lo)/(Lo); dimensionless units

3. Stress-strain diagrams

Plot of stress (vertical) versus strain (horizontal)

  • Allows convenient comparison of materials
  • Different curves for compression, tension, and shear
  • Curves depend on rate of testing and temperature

4. Analysis of curves

  • Elastic behavior
    • Initial response to stress is elastic strain
    • Elastic modulus-slope of first part of curve and represents stiffness of material or the resistance to deformation under force
    • Elastic limit (proportional limit)- stress above which the material no longer behaves totally elastically
    • Yield strength-stress that is an estimate of the elastic limit at 0.002 permanent strain
    • Hardness-value on a relative scale that estimates the elastic limit in terms of a material’s resistance to indentation (Knoop hardness scale, Diamond pyramid, Brinnell, Rockwell hardness scale, Shore A hardness scale, Mohs hardness scale

 

  • Resilience-area under the stress strain curve up to the elastic limit (and it estimates the total elastic energy that can be absorbed before the onset of plastic deformation)
  • Elastic and plastic behavior
  • Beyond the stress level of the elastic  limit, there is a combination of elastic  and plastic strain
  • Ultimate strength-highest stress  reached before fracture; the ultimate compressive strength is greater than the ultimate shear strength and the ultimate tensile strength
  • Elongation (percent elongation)- percent change in length up to the point of fracture = strain x 100%
  • Brittle materials-<5% elongation at fracture
  • Ductile materials->5% elongation  at fracture
  • Toughness-area under the stress strain  curve up to the point of fracture (it estimates the total energy absorbed up to fracture)
  • Time-dependent behavior

the faster a stress is applied, the more likely a material is to store the energy elastically and not plastically

  • Creep-strain relaxation
  • Stress relaxation

COMPOSITE RESINS -Manipulation

Dental Materials

Manipulation

Selection

o    Microfilled composites or hybrids for anterior class III, IV, V
o    Hybrids or midifills for posterior class I, II, III, V

Conditioning of enamel and / or dentin

Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize

Mixing (if required)--> mix two pastes for 20 to 30 seconds

o    Self-cured composite-working time is 60 to 120 seconds after mixing
o    Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o    Dual-cured composite-working time is > 10 minutes
o    Two-stage cured composite-working time is >5 minutes

Placement

use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness
 

Dental Solders

Dental Materials

Dental Solders

Applications-bridges and orthodontic appliances

Terms

Soldering -joining operation using filler metal that melts below 500° C

Brazing -joining operation using filler metal that melts above 500°C

Welding-melting and alloying of pieces to be joined

Fluxing
 -Oxidative cleaning of area to be soldered
 - Oxygen scavenging to prevent oxidation of alloy being soldered
16- 650 -- 650 fineness solder to be used with 16-karat alloys; fineness refers to the gold content

Classification

a. Gold solders-bridges
b. Silver solders-gold-substitute bridges and orthodontic alloys

Structure of gold solders

Composition-lower gold content than of alloys being soldered

Manipulation-solder must melt below melting temperature of alloy

Properties

1. Physical-similar to alloys being joined
2. Chemical-more prone to chemical and electrochemical corrosion
3. Mechanical-similar to alloy  being joined
4. Biologic-similar to alloys being joined