Talk to us?

Anatomy - NEETMDS- courses
NEET MDS Lessons
Anatomy

Intramembranous ossification

  • Flat bones develop in this way (bones of the skull)
  • This type of bone development takes place in mesenchymal tissue
  • Mesenchymal cells condense to form a primary ossification centre (blastema)
  • Some of the condensed mesenchymal cells change to osteoprogenitor cells
  • Osteoprogenitor cells change into osteoblasts which start to deposit bone
  • As the osteoblasts deposit bone some of them become trapped in lacunae in the bone and then change into osteocytes
  • Osteoblasts lie on the surface of the newly formed bone
  • As more and more bone is deposited more and more osteocytes are formed from mesenchymal cells
  • The bone that is formed is called a spicule
  • This process takes place in many places simultaneously
  • The spicules fuse to form trabeculae
  • Blood vessels grow into the spaces between the trabeculae
  • Mesenchymal cells in the spaces give rise to hemopoetic tissue
  • This type of bone development forms the first phase in endochondral development
  • It is also responsible for the growth of short bones and the thickening of long bones

The Cheeks

  • The cheeks (L. buccae) form the lateral wall of the vestibule of the oral cavity.
  • They have essentially the same structure as the lips with which they are continuous.
  • The principal muscular component of the cheeks is the buccinator muscle.
  • Superficial to the fascia covering this muscle is the buccal fatpad that gives cheeks their rounded contour, especially in infants.
  • The lips and cheeks act as a functional unit (e.g. during sucking, blowing, eating, etc.).
  • They act as an oral sphincter in pushing food from the vestibule to the oral cavity proper.
  • The tongue and buccinator muscle keep the food between the molar teeth during chewing.

Sensory Nerves of the Cheeks

  • These are branches of the maxillary and mandibular nerves.
  • They supply the skin of the cheeks and the mucous membrane lining the cheeks.

Internal Ear

  • Osseous labyrinth: a complex system of cavities in the substance of the petrous bone.
  • Membranous labyrinth: filled with endolymph, bathed in perilymph.

Muscles Moving the Auditory Ossicles

The Tensor Tympani Muscle

  • This muscle is about 2 cm long.
  • Origin: superior surface of the cartilaginous part of the auditory tube, the greater wing of the sphenoid bone, and the petrous part of the temporal bone.
  • Insertion: handle of the malleus.
  • Innervation: mandibular nerve (CN V3) through the nerve to medial pterygoid.
  • The tensor tympani muscle pulls the handle of the malleus medially, tensing the tympanic membrane, and reducing the amplitude of its oscillations.
  • This tends to prevent damage to the internal ear when one is exposed to load sounds.

 

The Stapedius Muscle

  • This tiny muscle is in the pyramidal eminence or the pyramid.
  • Origin: pyramidal eminence on the posterior wall of the tympanic cavity. Its tendon enters the tympanic cavity by traversing a pinpoint foramen in the apex of the pyramid.
  • Insertion: neck of the stapes.
  • Innervation: nerve to the stapedius muscle, which arises from the facial nerve (CN VII).
  • The stapedius muscle pulls the stapes posteriorly and tilts its base in the fenestra vestibuli or oval window, thereby tightening the anular ligament and reducing the oscillatory range.
  • It also prevents excessive movement of the stapes.

3 basic functions
o    protection of respiratory tract during swallowing food/air pathways cross.
    epiglottis provides protection
o    control intra-thoracic pressure (in coughing) -    close off airway to build pressure then rapidly open to release stuff
o    production of sound (in speaking, singing, laughing)

Important structures

o    hyoid bone
o    thyroid cartilage
o    arytenoids cartilage: vocal and muscle process
    sits on slope on posterior side of cricoid - spin and slide
o    cricoid cartilage: signet ring
o    thyroepiglottic ligament

Membranes and ligaments

o    membrane: general; ligament: thickening of membrane
o    folds: free edges of membranes or ligaments
o    names: tell you where located

Important membranes:
    quandrangular/vestibular membrane—from epiglottis to arytenoids
•    inferior edge: false vocal fold
    thyrohyoid membrane
    conus elasticus = cricothyroid = cricovocal
•    superior/medial edge = vocal fold
•    vocal ligaments: true folds, top of cricothyroid membrane

EPITHELIUMS

Epithelial Tissue Epithelial tissue covers surfaces, usually has a basement membrane, has little extracellular material, and has no blood vessels. A basement membrane attaches the epithelial cells to underlying tissues. Most epithelia have a free surface, which is not in contact with other cells. Epithelia are classified according to the number of cell layers and the shape of the cells.

 

  • Epitheliums contain no blood vessels.  There is normally an underlying layer of connective tissue
  • Almost all epitheliums lie on a basement membrane.The basement membrane consists of  a basal lamina and  reticular lamina. The reticular lamina is connected to the basal lamina by anchoring fibrils. The reticular lamina may be absent in which case the basement membrane consist only of a basal lamina. The basal lamina consists of a   - lamina densa in the middle (physical barrier) with a lamina lucida on both sides (+charge barrier),The basement membrane is absent in ependymal cells.The basement membrane is not continuous in sinusoidal capillaries.
  • Epitheliums always line or cover something
  • Epithelial cells lie close together with little intercellular space
  • Epithelial cells are strongly connected to one another especially those epitheliums that are subjected to mechanical forces.  

Functions of Epithelium:

→ Simple epithelium involved with diffusion, filtration, secretion, or absorption

→ Stratified epithelium protects from abrasion

→ Squamous cells function in diffusion or filtration

The Medial Wall of the Orbit 

  • This wall is paper-thin and is formed by the orbital lamina or lamina papyracea of the ethmoid bone, along with contributions from the frontal, lacrimal, and sphenoid bones (L. papyraceus, "made of papyrus" or parchment paper).
  • There is a vertical lacrimal groove in the medial wall, which is formed anteriorly by the maxilla and posteriorly by the lacrimal bone.
  • It forms a fossa for the lacrimal sac and the adjacent part of the nasolacrimal duct.
  • Along the suture between the ethmoid and frontal bones are two small foramina; the anterior and posterior ethmoidal foramina.
  • These transmit nerves and vessels of the same name.

Explore by Exams