Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Microbiology

Autoantibodies

Anti-nuclear antibodies (ANA)    Systemic Lupus
Anti-dsDNA, anti-Smith               Specific for Systemic Lupus
Anti-histone                                 Drug-induced Lupus
Anti-IgG                                       Rheumatoid arthritis
Anti-neutrophil                             Vasculitis
Anti-centromere                           Scleroderma (CREST)
Anti-Scl-70                                   Sclerderma (diffuse)
Anti-mitochondria                         1oary biliary cirrhosis
Anti-gliadin                                   Celiac disease
Anti-basement membrane            Goodpasture’s syndrome
Anti-epithelial cell                          Pemphigus vulgaris
Anti-microsomal                            Hashimoto’s thryoiditis

Types of microscopy used in bacteriology

Light microscopy
Phase contrast microscopy
Fluorescence microscopy
Darkfield microscopy
Transmission electron microscopy
Scanning electron microscopy

Fluorescent microscopy in which ultraviolet rays are used to examine cells after treatment with fluorescent days.

Phase contrast microscope enhances the refractive index differences of the cell components. This microscopy can be used to reveal details of the internal structures as well as capsules, endospores and motility

Electron microscope The resolving power is more than 200 times that of light microscope.
 

Application of agglutination reactions

Agglutination reaction                Example

Tube agglutination    -> Widal test, Weil Felix reaction, Standard tube test for brucellosis

Slide agglutination   -> Typing of pneumococci,Diagnosis of Salmonella,Diagnosis of Shigella

Agglutination Absorption test  -> Salmonella diagnosis

Coagglutination   -> Grouping of streptococci, Identification of gonococci, Detection of Haemophilus, Antigen in CSF

Passive agglutination
Latex agglutination                   Detection of HBs Ag, ASO, CRP
 

NUTRITION OF BACTERIA

Nutrients

Chemoheterotrophs: nutrient source is organic material
Bacteria also requires a source of  minerals.

Oxygen

On this basis bacteria have been divided into four groups.

Obligate Anaerobes: These grow only under conditions of high reducing intensity. These bacteria catalase peroxidase, superoxide dismutase and cytochrome systems
Clostridium and Bacteroides are important examples.

Facultalive Anaerobes. These can grow under both aerobic and anaerobic conditions and include members of family enterobacteriaceae and many other bacteria.

Obligatory Aerobes. These cannot grow unless oxygen is present in the medium. Pseudomonas belong to this group.

Microaerophillic. These organisms can grow under conditions with low oxygen tension. Clostridium tetani is an important example.
The strict anaerobes are unable to grow unless Eh is as low as 0.2 volt

Temperature

•    On the basis of temperature requirements, three groups of bacteria are recognised.

•    Psychrophilic : Growth in  the range of —5 to 30°C with an optimum of 10-20 

•    Mesophillic : bacteria grow best at 20-40°C with a range of 10-45°C. 

•    Medically important bacteria belong to this group

•    Myco. leprae is one such important example and it can grow only at reduced temperature such as footpad of mouse

•    Thermophillic organisms prefer high temperature (25-80°C) for growth and yield maximum growth at 50-60°C

pH :  Most pathogenic bacteria require a pH of  7.2-7.6 for their own optimal growth.
 

PHYSICAL AGENTS

Heat occupies the most important place as a physical agent.

Moist Heat : This is heating in the presence of water and can be employed in the following ways:

Temperature below 100°C: This includes holder method of Pasteurization where 60°C for 30 minutes is employed for sterilization and in its flash modification where in objects are subjected to a temperature of 71.1°C for 15 seconds. This method does not destroy spores.

Temperatures Around 100°C : Tyndallization is an example of this methodology in which steaming of the object is done for 30 minutes on each of three consecutive days. Spores which survive the heating process would germinate before the next thermal exposure and would then be killed.

Temperatures Above 100°C : Dry saturated steam acts as an excellent agent for sterilization. Autoclaves have been designed on the principles of moist heat.

Time-temperature relationship in heat sterilization
Moist heat   (autoclaving)

121°C       15 minutes
126°C         10 minutes
134 C          3 minutes

Dry heat

>160°C    >120 minutes
>170°C    >60minutes
>180°C    >30 minutes

Mechanism of microbial inactivation 

The autoclaving is in use for the sterilization of many ophthalmic and parentral products. surgical dressings, rubber gloves, bacteriological media as well a of lab and hospital reusable goods.

Dry Heat: Less efficient,  bacterial spores are most resistant. Spores may require a temperature of 140° C for three hours to get killed.
Dry heat sterilization is usually carried out by flaming as is done in microbiology laboratory to sterilize the inoculating loop and in hot air ovens in which a number of time-temperature combinations can be used. It is essential that hot air should circulate between the objects to be sterilized. Microbial inactivation by dry heat is primarily an oxidation process.

Dry heat is employed for sterilization of glassware glass syringes, oils and oily injections as well as metal instruments.    -


Indicators of Sterilization:  
These determine the efficacy of heat sterilization and can be in the form of spores of Bacillus stearothermophilus (killed at 121C in 12 minutes) or in the form of chemical indicators, autoclave tapes and thermocouples.

Ionizing Radiations

Ionizing radiations include X-rays, gamma rays and beta rays, and these induce defects in the microbial DNA synthesis is inhibited resulting in cell death. Spores are more resistant to ionizing radiations than nonsporulating bacteria.

The ionizing radiations are used for the sterilization of single use disposable medical items.

Mechanism of microbial inactivation by moist heat

Bacterial spores

•    Denaturation of  spore_epzymes
•    Impairment of germination
•    Damage to cell membrane
•    Increased sensitivity to inhibitory agents
•    Structural damage
•    Damage to chromosome

Nonsporulating bacteria

•    Damage to cytoplasmic membrane
•    Breakdown of RNA
•    Coagulation  of proteins
•    Damage to bacterial chromosome

Ultraviolet Radiations : 
wave length 240-280 nm have been found to be most efficient in sterilizing. Bacterial spores are more resistant to U.V. rays than the vegetative forms. Even viruses are sometimes more resistant than vegetative bacteria.

Mechanism of Action :

Exposure to UV rays results in the formation of purine and pyrimidine diamers between adjacent molecules in the same strand of DNA. This results into noncoding lesions in DNA and bacterial death.
Used to disinfect drinking water, obtaining pyrogen free water, air disinfection (especially in safety laboratories, hospitals, operation theatres) and in places where dangerous microorganisms are being handled.

Filteration

Type of Filters

Various types of filters that are available are    /
Unglazed ceramic filter (Chamberland and Doulton filters)
Asbestos filters (Seitz, Carlson and Sterimat filters)
Sintered glass filters

Membrane filters

Membrane filters are widely used now a days. Made up of cellulose ester and are most suitable for preparing_sterile solutions. The range of pore size in which these are available is 0.05-12 µm whereas the required pore size for sterlization is in range of 0.2-0.22 p.m.

GENETIC VARIATION

Two methods are known for genetic variation in bacteria: mutation and gene transfer.

Mutation : Any change in the sequence of bases of DNA, irrespective of detectable changes in the cell phenotype. Mutations may be spontaneous or induced by various agents which are known as mutagens. 

Spontaneous Mutations: Arise from enzymatic imperfections during DNA replications or with transient insertions of transposable elements.

Induced Mutations: Mutation by physical and chemical mutagens.

Physical mutagens  ultraviolet rays and high-energy ionizing radiations. The primary effect of UV rays on DNA is the production of pyrmidine dimers whereas ionizing radiations cause single_stranded breaks the DNA molecules.

Chemical mutagens :Affecting nucleotide sequence

(i) Agents which cause error in base pairing (e.g. nitrous acid and alkylating agents).
(ii) Agents which cause errors in DNA replication (e.g. acridine dyes such as acridine orange and profiavine).
(iii) Base analogs which are incorporated into DNA and cause replication errors (e.g. 5-bromouracil)

Gene Transfer

Transformation: Uptake of naked DNA

Transduction    : Infection by a nonlethal bacteriophage

Conjugation    : Mating between cells in contact

Protoplast fusion

Transformation: Gene transfer by soluble DNA is called as transformation. it requires that DNA be absorbed by the cell, gain entrance to the cytoplasm and undergo recombination with the host genome. 

Artificial Transformation(transfection) :Some of the bacteria (such as Escherichia coli) resist transformation until they are subjected to some special treatment such as CaCl2 to make the bacterium more permeable to DNA. Such modified cells can also take up intact double stranded DNA extracted from viruses or in the shape of plasmids. Though the process is same as transformation, it is 9 as transfection because it results in infection by an abnormal route

Transduction :The type of gene transfer in which the DNA of one bacterial cell is introduced into another bacterial cell by viral infection is known as transduction. This introduces only a small fragment of DNA. Because the DNA is protected from damage by the surrounding phage coat, transduction is an easier to perform and more reproducible process than transduction. ,

Two types of transduction are known.

- Generalized transduction When a bacteriophage picks up fragments of host DNA at random and can transfer any genes

-  Specialised transduction: phage DNA that has been integrated into the host chromosome is excised along with a few adjacent genes, which the phage can then transfer.

After entry into the host cell, the phage DNA gets incorporated into the host chromosome in such a way that the two genomes are linearly contiguous (lysogeny). The phage genome in this stage is known as prophage, The host cell acquires a significant new property as a consequence of lysogeny because it becomes immune to infection by homologous phage. This is hence called as lysogenic conversion and endow toxigenicity to Corynebacterium diphtheriae

Abortive Transduction :phage DNA fails to integrated into the host chromosome, the process is called as abortive transduction The phage DNA does not replicate and along with binary fission Of the host it goes into one of the daughter cells.

Conjugation :This is defined as the transfer of DNA directly from on bacterial. .cell to another by a mechanism that requires cell-to-cell contact. 

The capacity to donate DNA depends upon the possession of the fertility (F) factor. The F pili  also retard male-male union. Concomitant with effective male-female pair formation, the circular DNA bearing the F factor is converted to a linear form that is transferred to the female cell in a sequential manner. DNA replication occurs in the male cell and the newly synthesized, semiconserved DNA molecule remains in the male. This ensures postmating characters of the male.

Conjugation in Different Bacteria: Unusual form of plasmid transfer, called phase mediated conjugation has  been reported to occur with some strains of Staphylococcus aureus.

Protoplast Fusion: Also called as genetic transfusion. Under osmotically buffered Conditions protoplast fusion takes place by joining of cell membrane and generation of cytoplasmic bridges through which genetic material can be exchanged.

Transposons: Transposons  Tn  are  DNA sequences which are incapable of autonomous existence and which transpose blocks of genetic material back and forth between cell Chromosome and smaller replicons such as plasmids. insertion sequences (IS ) are another similar group of nucleotides which can move from one chromosome to another

Genetic material. IS and  Tn are collectively also known as transposable elements or Jumping genes. These are now recognised to play an important role in bringing about vanous types of mutations.


 

BACTERIAL GROWTH

The conversion of a parental cell into two daughters constitutes the bacterial life cycle and the time taken to complete cell cycle is known as generation_time. This is around 15 minutes in vegetative bacteria except mycobacteria.

Bacterial Growth Curve

In the presence of fresh growth medium a bacterium shows following four phases;

The Lag phase -> The Log phase -> The Stationary phase  -> The Decline phase

The Lag Phase : short duration , bacteria adapt themselves to new environment 

The Log Phase (Exponential Phase) : Regular growth of bacteria occurs The morphology of bacteria is best developed in this phase and organisms manifest typical biochemical characters. 

- Most of the cidal Abx work best in this phase
•    i.e. Ampicillin
- Best phase for staining bacterial cultures

Chemostat and turbidostat are examples of technique by which this phase can be prolonged.

Stationary Phase : balanced growth and cell division cannot be sustained. The total cell Count remains static till lysis supervenes, but the viable cell count quickly declines.

Decline Phase: death phase. Dyeing bacteria exceed the dividing bacterias.
 

Explore by Exams