Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Serum Lipids

 

LIPID

Typical values (mg/dl)

Desirable (mg/dl)

Cholesterol (total)

170–210

<200

LDL cholesterol

60–140

<100

HDL cholesterol

35–85

>40

Triglycerides

40–160

<160

 

  • Total cholesterol is the sum of
    • HDL cholesterol
    • LDL cholesterol and
    • 20% of the triglyceride value
  • Note that
    • high LDL values are bad, but
    • high HDL values are good.
  • Using the various values, one can calculate a
    cardiac risk ratio = total cholesterol divided by HDL cholesterol
  • A cardiac risk ratio greater than 7 is considered a warning.

Control of processes in the stomach:

The stomach, like the rest of the GI tract, receives input from the autonomic nervous system. Positive stimuli come from the parasympathetic division through the vagus nerve. This stimulates normal secretion and motility of the stomach. Control occurs in several phases:

Cephalic phase stimulates secretion in anticipation of eating to prepare the stomach for reception of food. The secretions from cephalic stimulation are watery and contain little enzyme or acid.

Gastric phase of control begins with a direct response to the contact of food in the stomach and is due to stimulation of pressoreceptors in the stomach lining which result in ACh and histamine release triggered by the vagus nerve. The secretion and motility which result begin to churn and liquefy the chyme and build up pressure in the stomach. Chyme surges forward as a result of muscle contraction but is blocked from entering the duodenum by the pyloric sphincter. A phenomenon call retropulsion occurs in which the chyme surges backward only to be pushed forward once again into the pylorus. The presence of this acid chyme in the pylorus causes the release of a hormone called gastrin into the bloodstream. Gastrin has a positive feedback effect on the motility and acid secretion of the stomach. This causes more churning, more pressure, and eventually some chyme enters the duodenum.

Intestinal phase of stomach control occurs. At first this involves more gastrin secretion from duodenal cells which acts as a "go" signal to enhance the stomach action already occurring. But as more acid chyme enters the duodenum the decreasing pH inhibits gastrin secretion and causes the release of negative or "stop" signals from the duodenum.

These take the form of chemicals called enterogastrones which include GIP (gastric inhibitory peptide). GIP inhibits stomach secretion and motility and allows time for the digestive process to proceed in the duodenum before it receives more chyme. The enterogastric reflex also reduces motility and forcefully closes the pyloric sphincter. Eventually as the chyme is removed, the pH increases and gastrin and the "go" signal resumes and the process occurs all over again. This series of "go" and "stop" signals continues until stomach emptying is complete.

 

Basic Properties of Gases

A.    Dalton's Law of Partial Pressures

1.    partial pressure - the "part" of the total air pressure caused by one component of a gas 

 

 

 

     Gas            Percent            Partial Pressure (P)
    ALL AIR        100.0%                760 mm Hg
    Nitrogen       78.6%                   597 mm Hg    (0.79 X 760)
    Oxygen          20.9%                l59 mm Hg    (0.21 X 760)
    CO2              0.04%                  0.3 mm Hg    (0.0004 X 760) 

2.    altitude - air pressure @ 10,000 ft = 563 mm Hg
3.    scuba diving - air pressure @ 100 ft = 3000 mm Hg

B.    Henry's Law of Gas Diffusion into Liquid

1.    Henry's Law - a certain gas will diffuse INTO or OUT OF a liquid down its concentration gradient in proportion to its partial pressure

2.    solubility - the ease with which a certain gas will "dissolve" into a liquid (like blood plasma)

HIGHest solubility in plasma            Carbon Dioxide
                                                      Oxygen
                                        
LOWest solubility in plasma             Nitrogen

C.    Hyperbaric (Above normal pressure) Conditions

1.    Creates HIGH gradient for gas entry into the body

2.    therapeutic - oxygen forced into blood during: carbon monoxide poisoning, circulatory shock, asphyxiation, gangrene, tetanus, etc.

3.    harmful - SCUBA divers may suffer the "bends" when they rise too quickly and Nitrogen gas "comes out of solution" and forms bubbles in the blood

 

 

 

 

Proteins:

  • about 50 - 60% of the dry mass of a typical cell
  • subunit is the amino acid & amino acids are linked by peptide bonds
  • 2 functional categories = structural (proteins part of the structure of a cell like those in the cell membrane) & enzymes

Enzymes are catalysts. Enzymes bind temporarily to one or more of the reactants of the reaction they catalyze. In doing so, they lower the amount of activation energy needed and thus speed up the reaction

Blood Groups

Blood groups are created by molecules present on the surface of red blood cells (and often on other cells as well).

The ABO Blood Groups

The ABO blood groups are the most important in assuring safe blood transfusions.

Blood Group

Antigens on RBCs

Antibodies in Serum

Genotypes

A

A

Anti-B

AA or AO

B

B

Anti-A

BB or BO

AB

A and B

Neither

AB

O

Neither

Anti-A and anti-B

OO

When red blood cells carrying one or both antigens are exposed to the corresponding antibodies, they agglutinate; that is, clump together. People usually have antibodies against those red cell antigens that they lack.

The critical principle to be followed is that transfused blood must not contain red cells that the recipient's antibodies can clump. Although theoretically it is possible to transfuse group O blood into any recipient, the antibodies in the donated plasma can damage the recipient's red cells. Thus all transfusions should be done with exactly-matched blood.

The Rh System

Rh antigens are transmembrane proteins with loops exposed at the surface of red blood cells. They appear to be used for the transport of carbon dioxide and/or ammonia across the plasma membrane. They are named for the rhesus monkey in which they were first discovered.

There are a number of Rh antigens. Red cells that are "Rh positive" express the one designated D. About 15% of the population have no RhD antigens and thus are "Rh negative".

The major importance of the Rh system for human health is to avoid the danger of RhD incompatibility between mother and fetus.

During birth, there is often a leakage of the baby's red blood cells into the mother's circulation. If the baby is Rh positive (having inherited the trait from its father) and the mother Rh-negative, these red cells will cause her to develop antibodies against the RhD antigen. The antibodies, usually of the IgG class, do not cause any problems for that child, but can cross the placenta and attack the red cells of a subsequent Rh+ fetus. This destroys the red cells producing anemia and jaundice. The disease, called erythroblastosis fetalis or hemolytic disease of the newborn, may be so severe as to kill the fetus or even the newborn infant. It is an example of an antibody-mediated cytotoxicity disorder.

Although certain other red cell antigens (in addition to Rh) sometimes cause problems for a fetus, an ABO incompatibility does not. Rh incompatibility so dangerous when ABO incompatibility is not

It turns out that most anti-A or anti-B antibodies are of the IgM class and these do not cross the placenta. In fact, an Rh/type O mother carrying an Rh+/type A, B, or AB fetus is resistant to sensitization to the Rh antigen. Presumably her anti-A and anti-B antibodies destroy any fetal cells that enter her blood before they can elicit anti-Rh antibodies in her.

This phenomenon has led to an extremely effective preventive measure to avoid Rh sensitization. Shortly after each birth of an Rh+ baby, the mother is given an injection of anti-Rh antibodies. The preparation is called Rh immune globulin (RhIG) or Rhogam. These passively acquired antibodies destroy any fetal cells that got into her circulation before they can elicit an active immune response in her.

Rh immune globulin came into common use in the United States in 1968, and within a decade the incidence of Rh hemolytic disease became very low.

Chemical Controls of Respiration

A.    Chemoreceptors (CO2, O2, H+)

1.    central chemoreceptors - located in the medulla
2.    peripheral chemoreceptors - large vessels of neck

B.    Carbon Dioxide Effects

1.    a powerful chemical regulator of breathing by increasing H+ (lowering pH)
    
a. hypercapnia            Carbon Dioxide increases -> 
                        Carbonic Acid increases ->
                        pH of CSF decreases (higher H+)- >
                        
DEPTH & RATE increase (hyperventilation)

b. hypocapnia - abnormally low Carbon Dioxide levels which can be produced by excessive hyperventilation; breathing into paper bag increases blood Carbon Dioxide levels

C.     Oxygen Effects

1.    aortic and carotid bodies - oxygen chemoreceptors

2.    slight Ox decrease - modulate Carb Diox receptors
3.    large Ox decrease - stimulate increase ventilation
4.    hypoxic drive - chronic elevation of Carb Diox (due to disease) causes Oxygen levels to have greater effect on regulation of breathing


D.    pH Effects (H+ ion)

1.    acidosis - acid buildup (H+) in blood, leads to increased RATE and DEPTH (lactic acid)


E.    Overview of Chemical Effects

 Chemical                             Breathing Effect

increased Carbon Dioxide (more H+)     increase
decreased Carbon Dioxide (less H+)     decrease

slight decrease in Oxygen             effect CO2 system
large decrease in Oxygen             increase ventilation

decreased pH (more H+)                 increase
increased pH (less H+)                 decrease

Membrane Structure & Function

Cell Membranes

  • Cell membranes are phospholipid bilayers (2 layers)
  • Bilayer forms a barrier to passage of molecules in an out of cell
  • Phospholipids = glycerol + 2 fatty acids + polar molecule (i.e., choline) + phosphate
  • Cholesterol (another lipid) stabilizes cell membranes
  • the hydrophobic tails of the phospholipids (fatty acids) are together in the center of the bilayer. This keeps them out of the water

Membranes Also Contain Proteins

  • Proteins that penetrate the membrane have hydrophobic sections ~25 amino acids long
  • Hydrophobic = doesn't like water = likes lipids
  • Membrane proteins have many functions:
    • receptors for hormones
    • pumps for transporting materials across the membrane
    • ion channels
    • adhesion molecules for holding cells to extracellular matrix

cell recognition antigens

Explore by Exams