Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

HISTOLOGIC CHANGES OF THE PULP

Regressive changes


Pulp decreases in size by the deposition of dentin.
This can be caused by age, attrition, abrasion, operative procedures, etc.
Cellular organelles decrease in number.

Fibrous changes

They are more obvious in injury rather than aging. Occasionally, scarring may also be apparent.

Pulpal stones or denticles

They can be: a)free, b)attached and/or c)embedded. Also they are devided in two groups: true or false. The true stones (denticles) contain dentinal tubules. The false predominate over the the true and are characterized by concentric layers of calcified material.

Diffuse calcifications

Calcified deposits along the collagen fiber bundles or blood vessels may be observed. They are more often in the root canal portion than the coronal area.

Histology of the Cementum

Cementum is a hard connective tissue that derives from ectomesenchyme.

Embryologically, there are two types of cementum:
Primary cementum: It is acellular and develops slowly as the tooth erupts. It covers the coronal 2/3 of the root and consists of intrinsic and extrinsic fibers (PDL).
Secondary cementum: It is formed after the tooth is in occlusion and consists of extrinsic and intrinsic (they derive from cementoblasts) fibers. It covers mainly the root surface.

Functions of Cementum

It protects the dentin (occludes the dentinal tubules)
It provides attachment of the periodontal fibers
It reverses tooth resorption

Cementum is composed of 90% collagen I and III and ground substance.
50% of cementum is mineralized with hydroxyapatite. Thin at the CE junction, thicker apically.

Differences Between the Deciduous and Permanent Teeth

1. Deciduous teeth are fewer in number and smaller in size but the deciduous molars are wider mesiodistally than the premolars. The deciduous anteriors are narrower mesiodistally than their permanent successors. Remember the leeway space that we discussed in the unit on occlusion?

2. Their enamel is thinner and whiter in appearance. Side by side, this is obvious in most young patients.

3. The crowns are rounded. The deciduous teeth are constricted at the neck (cervix).

4. The roots of deciduous anterior teeth are longer and narrower than the roots of their permanent successors.

5. The roots of deciduous molars are longer and more slender than the roots of the permanent molars. Also, they flare greatly.

6. The cervical ridges of enamel seen on deciduous teeth are more prominent than on the permanent teeth. This 'bulge' is very pronounced at the mesiobuccal of deciduous first molars.

G. Deciduous cervical enamel rods incline incisally/occlusally.

MAXILLARY CUSPIDS (CANINE)

The maxillary cuspid is usually the longest tooth in either jaw. canines are considered the corner stones of the dental arch They are the only teeth in the dentition with a single cusp.

Facial Surface:- The facial surface of the crown differs considerably from that of the maxillary central or lateral incisors. In that the incisal edges of the central and lateral incisor are nearly straight, the cuspid has a definite point, or cusp.  There are two cutting edges, the mesioincisal and the distoincisal. The distoincisal cutting edge is the longer of the two. The developmental grooves prominent on the facial surface  extending two-thirds of the distance from the tip of the cusp to the cervical line.  The distal cusp ridge is longer than the mesial cusp ridge

Lingual Surface:  Distinct mesial and distal marginal ridges, a well-devloped cingulum, and the cusp ridges form the boundries of the lingual surface. The prominent lingual ridge extends from the cusp tip to the cingulum, dividing the lingual surface into mesial and distal fossae.

Proximal: The mesial and distal aspects present a triangular outline. They resemble the incisors, but are more robust--especially in the cingulum region

Incisal: The asymmetry of this tooth is readily apparent from this aspect. It usually thicker labiolingually than it is mesiodistally. The tip of the cusp is displaced labially and mesial to the central long axis of this tooth.

Root Surface:-The root is single and is the longest root in the arch. It is usually twice the length of the crown.

The very first histological evidence of tooth development appear during the second month of intrauterine life. Calcification of deciduous incisors begins at 3-4 months in utero.

Enamel

Composition: 96% mineral, 4% organic material and water
Crystalline calcium phosphate, hydroxyapatite
Physical characteristics: Hardness compared to mild steel; enamel is brittle
Support from dentin is necessary
Enamel has varies in thickness

Structure of enamel

Ground sections of enamel disclose the information that we have about enamel
Enamel is composed of rods
In the past we used the term prism (do not use)
 

Enamel rod
The rod has a cylinder-like shape and is composed of crystals that run parallel to the longitudinal axis of the rod. At the periphery of the rod the crystals flare laterally.
Interrod region: surrounds each rod; contain more enamel protein (fish scale appearance)
Rod sheath: boundary where crystals of rods meet those of the interrod region at sharp angles (We used to describe that as a keyhole configuration)
Each ameloblast forms one rod and together with adjacent ameloblasts the interrod region Very close to dentin there is no rod structure since the Tomes' processes develop after the first enamel is formed.
Striae of Retzius and cross striations
Incremental lines
Enamel structure is altered along these lines
Cross striations are also a form of incremental lines highlighting the daily secretory activity of ameloblasts

Bands of Hunter and Schreger
Optical phenomenon produced by changes in rod direction

Gnarled enamel
Twisting of rods around each other over the cusps of teeth

Enamel tufts and lamellae
They are like geologic faults
Tufts project from the DE junction, appear branched and contain greater concentrations of enamel protein than enamel
Lamellae extend from the enamel surface
Enamel spindles

Perikymata
Shallow furrows on surface of enamel formed by the striae of Retzius

Enamel

 

Structural characteristics and microscopic features

a.  Enamel rods or prisms

 

(1) Basic structural unit of enamel.

 

(2) Consists of tightly packed hydroxyapatite crystals. Hydroxyapatite crystals in enamel are four times larger and more tightly packed than hydroxyapatite found in other calcified

tissues (i.e., it is harder than bone).

 

(3) Each rod extends the entire thickness of enamel and is perpendicular to the dentinoenamel junction (DEJ).
 

b. Aprismatic enamel

 

(1) The thin outer layer of enamel found on the surface of newly erupted teeth.

(2) Consists of enamel crystals that are aligned perpendicular to the surface.

(3) It is aprismatic (i.e., prismless) and is more mineralized than the enamel beneath it.

(4) It results from the absence of Tomes processes on the ameloblasts during the final stages of enamel deposition.

 

c. Lines of Retzius (enamel striae)

 

(1) Microscopic features

 (a) In longitudinal sections, they are observed as brown lines that extend from the DEJ to the

tooth surface.

 (b) In transverse sections, they appear as dark, concentric rings similar to growth rings in a tree.
 

(2) The lines appear weekly during the formation of enamel.
 

(3) Although the cause of striae formation is unknown, the lines may represent appositional or incremental growth of enamel. They may also result from metabolic disturbances of ameloblasts.


(4) Neonatal line

(a) An accentuated, dark line of Retzius that results from the effect of physiological changes

on ameloblasts at birth.

(b) Found in all primary teeth and some cusps of permanent first molars.

 

d. Perikymata

(1) Lines of Retzius terminate on the tooth surface in shallow grooves known a perikymata.

(2) These grooves are usually lost through wear but may be observed on the surfaces of developing teeth or nonmasticatory surfaces of formed teeth.
 

e. Hunter-Schreger bands

(1) Enamel rods run in different directions. In longitudinal sections, these changes in direction result in a banding pattern known as HunterSchreger bands.

 

(2) These bands represent an optical phenomenon of enamel and consist of a series of  alternating dark and light lines when the section is viewed with reflected or polarized

light.

 

f. Enamel tufts

(1) Consist of hypomineralized groups of enamel rods.

(2) They are observed as short, dark projections found near or at the DEJ.

(3) They have no known clinical significance.

 

g. Enamel lamellae
 

(1) Small, sheet-like cracks found on the surface of enamel that extend its entire thickness.


(2) Consist of hypocalcified enamel.


(3) The open crack may be filled with organic material from leftover enamel organ components, connective tissues of the developing tooth, or debris from the oral cavity.

 

(4) Both enamel tufts and lamellae may be likened to geological faults in mature enamel.
 

h. Enamel spindle
 

(1) Remnants of odontoblastic processes that become trapped after crossing the DEJ during the differentiation of ameloblasts.
 

(2) Spindles are more pronounced beneath the cusps or incisal edges of teeth (i.e., areas where occlusal stresses are the greatest).
 

 

Maxillary (upper) teeth

Primary teeth

Central
incisor

Lateral
incisor


Canine

First
molar

Second
molar

Initial calcification

14 wk

16 wk

17 wk

15.5 wk

19 wk

Crown completed

1.5 mo

2.5 mo

9 mo

6 mo

11 mo

Root completed

1.5 yr

2 yr

3.25 yr

2.5 yr

3 yr

 

 Mandibular (lower) teeth 

Initial calcification

14 wk

16 wk

17 wk

15.5 wk

18 wk

Crown completed

2.5 mo

3 mo

9 mo

5.5 mo

10 mo

Root completed

1.5 yr

1.5 yr

3.25 yr

2.5 yr

3 yr

 

 

 

 

 

 

Explore by Exams