Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

FORMATION OF THE ROOT AND ITS ROLE IN ERUPTION

- As dentin and enamel is deposited the shape of the future crown appears.

- The cells just superficial to the horizontal diaphragm start to proliferate and grow pushing the horizontal diaphragm down into the mesenchym.

- This forms a tube.

- This tube is the epithelial root sheath of Hertwig's.

- The mesenchym cells lying inside the tube nearest to the epithelial root sheath are induced to differentiate into odontoblasts, which then start to deposit dentin.

- After the first dentin of the root has been laid down the inner epithelial cells of the sheath start to deposit an enameloid substance called intermediate cementum.

- The root sheath cells then separate from the intermediate cementum and breaks up in a network of epithelial strands.

- The mesenchym on the outside comes into contact with the intermediate cementum and differentiate into

cementoblasts, which will deposit the cementum.

- This cementum traps the collagenic fibres, of the periodontal ligament, which are also formed.

- Epithelium of the root sheath persists as epithelial rests of Malassez. Because the epithelium of the root sheath forms from enamel epithelium it can develop into ameloblasts which will deposit enamel pearls.

- There is little space for the root to develop.

- To create space the crown is pushed out.

CONTACT POINT.:-The point on the proximal surface where two adjacent teeth actually touch each other is called a contact point.

INTERPROXIMAL SPACE.:-The interproximal space is the area between the teeth. Part of the interproximal space is occupied by the interdental papilla. The interdental papilla is a triangular fold of gingival tissue. The part of the interproximal space not occupied is called the embrasure.

EMBRASURE. :-The embrasure occupies an area bordered by interdental papilla, the proximal surfaces of the two adjacent teeth, and the contact point (fig 4-18). If there is no contact point between the teeth, then the area between them is called a diastema instead of an embrasure.

OCCLUSAL

The occlusal surface is the broad chewing surface found on posterior teeth (bicuspids and molars).

OCCLUSION.:-Occlusion is the relationship between the occlusal surfaces of maxillary and mandibular teeth when they are in contact. Many patterns of tooth contact are possible. Part of the reason for the variety is the mandibular condyle's substantial range of movement within the temporal mandibular joint.

 

Malocclusion occurs when any abnormality in occlusal relationships exist in the dentition. Centric occlusion, is the centered contact position of the chewing surfaces of mandibular teeth on the chewing surface (occlusal) of the maxillary teeth.

OCCLUSAL PLANE.:-Maxillary and mandibular teeth come into centric occlusion and meet along anteroposterior and lateral curves. The anteroposterior curve is called the Curve of Spee  in which the mandibular arch forms a concave (a bowl-like upward curve). The lateral curve is called the Curve of Wilson . The composite (combination) of these curves form a line called the occlusal plane, and is created by the contact of the upper and lower teeth

VERTICAL AND HORIZONTAL OVERLAP. :-Vertical overlap is the extension of the maxillary teeth over the mandibular counterparts in a vertical direction when the dentition is in centric occlusion Horizontal overlap is the projection of maxillary teeth over antagonists (something that opposes another) in a horizontal direction.

KEY TO OCCLUSION.:-The occlusal surfaces of opposing teeth bear a definite relationship to each other. In normal jaw relations and when teeth are of normal size and in the correct position, the mesiofacial cusp of the maxillary first molar occludes in the facial groove of the mandibular first molar. This normal relationship of these two teeth is called the key to occlusion.

PERMANENT DENTITION

The permanent dentition consists of 32 teeth. Each tooth in the permanent dentition is described in this section. It should be remembered that teeth show considerable variation in size, shape, and other characteristics from one person to another. Certain teeth show a greater tendency than others to deviate from the normal. The descriptions that follow are of normal teeth.

 lntraarch relationship refers to the alignment of the teeth within an arch

1. In an ideal alignment teeth should contact at their proximal crests of curvature. A continuous arch form is observed in occlusal view

Curves of the occlusal plane (a line connecting the cusp tips of the canines, premolars, and molars) are observed from the proximal view

 

Curve of Spee: anterior to posterior curve; for mandibular teeth the curve is concave and for maxillary teeth it is convex

Curve of Wilson- medial to lateral curve for mandibular teeth the curve is also convex and for the maxillary it is convex

2. Contact does not always exist Some permanent dentitions have normal spacing

Primary dentitions often have developmental spacing in the anterior area: some primary den titions have a pattern of spacing called primate spaces between the primary maxillary lateral incisors and canine and between the mandibular canine and first mo1ar

Disturbances to the intraarch alignment are described as

a. Qpen contact where interproximal space exist  because of missing teeth oral habits, dental disease, or overdeveloped frena

b. where contact or position is at an unexpected area because of developmental disturbances, crowding, dental caries or periodontal ligament for their misplaced position: facial, lingual. mesial, supra(supraerupted) infra (infraerupted) and torso (rotated) version

THE DECIDUOUS DENTITION

 

I. The Deciduous Dentition

-It is also known as the primary, baby, milk or lacteal dentition.

diphyodont, that is, with two sets of teeth. The term deciduous means literally 'to fall off.'

  There are twenty deciduous teeth that are classified into three classes. There are ten maxillary teeth and ten mandibular teeth. The dentition consists of incisors, canines and molars.

Gingiva

The connection between the gingiva and the tooth is called the dentogingival junction. This junction has three epithelial types: gingival, sulcular, and junctional epithelium. These three types form from a mass of epithelial cells known as the epithelial cuff between the tooth and the mouth.

Much about gingival formation is not fully understood, but it is known that hemidesmosomes form between the gingival epithelium and the tooth and are responsible for the primary epithelial attachment. Hemidesmosomes provide anchorage between cells through small filament-like structures provided by the remnants of ameloblasts. Once this occurs, junctional epithelium forms from reduced enamel epithelium, one of the products of the enamel organ, and divides rapidly. This results in the perpetually increasing size of the junctional epithelial layer and the isolation of the remenants of ameloblasts from any source of nutrition. As the ameloblasts degenerate, a gingival sulcus is created.

Disturbances to interarch alignment are

a. Excessive overbite where the incisal edge of the maxillary incisors extend to the cervical third of the mandibular incisors

b. Excessive overjet where the maxillary teeth overjet the mandibular teeth by more than 3mm

c. End-to-end relationship: edge-to edge bite where the anterior teeth meet at there incisal edge with  no overjet or overbite; cusp-to bite where the posterior teeth meet  cusp to cusp with no interdigitation

d. Crossbite where the normal faciolingual relationship of the maxillary to the mandibular teeth is altered for the anterior.teeth. the mandibular  tooth or teeth are facial  rather than lingual to the maxillary teeth for the posterior teeth, normal inercuspaton is not seen

ARTICULAR SURFACES COVERED BY FIBROUS TISSUE
TMJ is an exception form other synovial joints. Two other joints, the acromio- and sternoclavicular joints are similar to the TMJ. Mandible & clavicle derive from intramembranous ossificiation.

Histologic

  1. Fibrous layer: collagen type I, avascular (self-contained and replicating)
  2. Proliferating zone that formes condylar cartilage
  3. Condylar cartilage is fibrocartilage that does not play role in articulation nor has formal function
  4. Capsule: dense collagenous tissue (includes the articular eminence)
  5. Synovial membrane: lines capsule (does not cover disk except posterior region); contains folds (increase in pathologic conditions) and villi
    Two layers: a cellular intima (synovial cells in fiber-free matrix) and a vascular subintima
    Synovial cells: A (macrophage-like) syntesize hyaluronate
    B (fibroblast-like) add protein in the fluid
    Synovial fluid: plasma with mucin and proteins, cells
    Liquid environment: lubrication, ?nutrition
  6. Disk: separates the cavity into two comprartments, type I collagen
    anterior and posterior portions
    anetiorly it divides into two lamellae one towards the capsule, the other towards the condyle
    vascular in the preiphery, avascular in the center
  7. Ligaments: nonelastic collagenous structures. One ligament worth mentioning is the lateral or temporomandibular ligament. Also there are the spheno- and stylomandibular with debatable functional role.

Innervations
 

Ruffini

Posture

Dynamic and static balance

Pacini

Dynamic mechanoreception

Movement accelerator

Golgi

Static mechanoreception

Protection (ligament)

Free

Pain

Protection joint

Explore by Exams