Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Periodontology

Microbes in Periodontics

Bacteria Associated with Periodontal Health

  • Primary Species:

    • Gram-Positive Facultative Bacteria:
      • Streptococcus:
        • S. sanguis
        • S. mitis
        • A. viscosus
        • A. naeslundii
      • Actinomyces:
        • Beneficial for maintaining periodontal health.
  • Protective or Beneficial Bacteria:

    • Key Species:
      • S. sanguis
      • Veillonella parvula
      • Corynebacterium ochracea
    • Characteristics:
      • Found in higher numbers at inactive periodontal sites (no attachment loss).
      • Low numbers at sites with active periodontal destruction.
      • Prevent colonization of pathogenic microorganisms (e.g., S. sanguis produces peroxide).
  • Clinical Relevance:

    • High levels of C. ochracea and S. sanguis are associated with greater attachment gain post-therapy.

Microbiology of Chronic Plaque-Induced Gingivitis

  • Composition:

    • Roughly equal proportions of:
      • Gram-Positive: 56%
      • Gram-Negative: 44%
      • Facultative: 59%
      • Anaerobic: 41%
  • Predominant Gram-Positive Species:

    • S. sanguis
    • S. mitis
    • S. intermedius
    • S. oralis
    • A. viscosus
    • A. naeslundii
    • Peptostreptococcus micros
  • Predominant Gram-Negative Species:

    • Fusobacterium nucleatum
    • Porphyromonas intermedia
    • Veillonella parvula
    • Haemophilus spp.
    • Capnocytophaga spp.
    • Campylobacter spp.
  • Pregnancy-Associated Gingivitis:

    • Increased levels of steroid hormones and P. intermedia.

Chronic Periodontitis

  • Key Microbial Species:

    • High levels of:
      • Porphyromonas gingivalis
      • Bacteroides forsythus
      • Porphyromonas intermedia
      • Campylobacter rectus
      • Eikenella corrodens
      • Fusobacterium nucleatum
      • Actinobacillus actinomycetemcomitans
      • Peptostreptococcus micros
      • Treponema spp.
      • Eubacterium spp.
  • Pathogenic Mechanisms:

    • P. gingivalis and A. actinomycetemcomitans can invade host tissue cells.
    • Viruses such as Epstein-Barr Virus-1 (EBV-1) and human cytomegalovirus (HCMV) may contribute to bone loss.

Localized Aggressive Periodontitis

  • Microbiota Characteristics:
    • Predominantly gram-negative, capnophilic, and anaerobic rods.
    • Almost all localized juvenile periodontitis (LJP) sites harbor A. actinomycetemcomitans, which can comprise up to 90% of the total cultivable microbiota.

Necrotizing Ulcerative Gingivitis (NUG)

Necrotizing Ulcerative Gingivitis (NUG), also known as Vincent's disease or trench mouth, is a severe form of periodontal disease characterized by the sudden onset of symptoms and specific clinical features.

Etiology and Predisposing Factors

  • Sudden Onset: NUG is characterized by a rapid onset of symptoms, often following debilitating diseases or acute respiratory infections.
  • Lifestyle Factors: Changes in living habits, such as prolonged work without adequate rest, poor nutrition, tobacco use, and psychological stress, are frequently noted in patient histories .
  • Smoking: Smoking has been identified as a significant predisposing factor for NUG/NDP .
  • Immune Compromise: Conditions that compromise the immune system, such as poor oral hygiene, smoking, and emotional stress, are major contributors to the development of NUG .

Clinical Presentation

  • Symptoms: NUG presents with:
    • Punched-out, crater-like depressions at the crest of interdental papillae.
    • Marginal gingival involvement, with rare extension to attached gingiva and oral mucosa.
    • Grey, pseudomembranous slough covering the lesions.
    • Spontaneous bleeding upon slight stimulation of the gingiva.
    • Fetid odor and increased salivation.

Microbiology

  • Mixed Bacterial Infection: NUG is caused by a complex of anaerobic bacteria, often referred to as the fusospirochetal complex, which includes:
    • Treponema vincentii
    • Treponema denticola
    • Treponema macrodentium
    • Fusobacterium nucleatum
    • Prevotella intermedia
    • Porphyromonas gingivalis

Treatment

  1. Control of Acute Phase:

    • Clean the wound with an antibacterial agent.
    • Irrigate the lesion with warm water and 5% vol/vol hydrogen peroxide.
    • Prescribe oxygen-releasing mouthwash (e.g., hydrogen peroxide DPF, sodium perborate DPF) to be used thrice daily.
    • Administer oral metronidazole for 3 to 5 days. If sensitive to metronidazole, prescribe penicillin; if sensitive to both, consider erythromycin or clindamycin.
    • Use 2% chlorhexidine in select cases for a short duration.
  2. Management of Residual Condition:

    • Remove predisposing local factors (e.g., overhangs).
    • Perform supra- and subgingival scaling.
    • Consider gingivoplasty to correct any residual gingival deformities.

Classification of Embrasures

  1. Type I Embrasures:

    • Description: These are characterized by the presence of interdental papillae that completely fill the embrasure space, with no gingival recession.
    • Recommended Cleaning Device:
      • Dental Floss: Dental floss is most effective in cleaning Type I embrasures. It can effectively remove plaque and debris from the tight spaces between teeth.
  2. Type II Embrasures:

    • Description: These embrasures have larger spaces due to some loss of attachment, but the interdental papillae are still present.
    • Recommended Cleaning Device:
      • Interproximal Brush: For Type II embrasures, interproximal brushes are recommended. These brushes have bristles that can effectively clean around the exposed root surfaces and between teeth, providing better plaque removal than dental floss in these larger spaces.
  3. Type III Embrasures:

    • Description: These spaces occur when there is significant loss of attachment, resulting in the absence of interdental papillae.
    • Recommended Cleaning Device:
      • Single Tufted Brushes: Single tufted brushes (also known as end-tuft brushes) are ideal for cleaning Type III embrasures. They can reach areas that are difficult to access with traditional floss or brushes, effectively cleaning the exposed root surfaces and the surrounding areas.

Dimensions of Toothbrushes

Toothbrushes play a crucial role in maintaining oral hygiene, and their design can significantly impact their effectiveness. The American Dental Association (ADA) has established guidelines for the dimensions and characteristics of acceptable toothbrushes. This lecture will outline these specifications and discuss their implications for dental health.

Acceptable Dimensions of Toothbrushes

  1. Brushing Surface Dimensions:

    • Length:
      • Acceptable brushing surfaces should measure between 1 to 1.25 inches (25.4 to 31.8 mm) long.
    • Width:
      • The width of the brushing surface should range from 5/16 to 3/8 inch (7.9 to 9.5 mm).
    • Rows of Bristles:
      • Toothbrushes should have 2 to 4 rows of bristles to effectively clean the teeth and gums.
    • Tufts per Row:
      • Each row should contain 5 to 12 tufts of bristles, allowing for adequate coverage and cleaning ability.
  2. Filament Diameter:

    • The diameter of the bristles can vary, affecting the stiffness and cleaning effectiveness:
      • Soft Filaments:
        • Diameter of 0.2 mm (0.007 inches). Ideal for sensitive gums and children.
      • Medium Filaments:
        • Diameter of 0.3 mm (0.012 inches). Suitable for most adults.
      • Hard Filaments:
        • Diameter of 0.4 mm (0.014 inches). Generally not recommended for daily use as they can be abrasive to the gums and enamel.
  3. Filament Stiffness:

    • The stiffness of the bristles is determined by the diameter relative to the length of the filament. Thicker filaments tend to be stiffer, which can affect the brushing technique and comfort.

Special Considerations for Children's Toothbrushes

  • Size:
    • Children's toothbrushes are designed to be smaller to accommodate their smaller mouths and teeth.
  • Bristle Thickness:
    • The bristles are thinner, measuring 0.005 inches (0.1 mm) in diameter, making them gentler on sensitive gums.
  • Bristle Length:
    • The bristles are shorter, typically around 0.344 inches (8.7 mm), to ensure effective cleaning without causing discomfort.

Clinical Implications

  1. Choosing the Right Toothbrush:

    • Dental professionals should guide patients in selecting toothbrushes that meet ADA specifications to ensure effective plaque removal and gum protection.
    • Emphasizing the importance of using soft or medium bristles can help prevent gum recession and enamel wear.
  2. Education on Brushing Technique:

    • Proper brushing technique is as important as the toothbrush itself. Patients should be educated on how to use their toothbrush effectively, regardless of the type they choose.
  3. Regular Replacement:

    • Patients should be advised to replace their toothbrush every 3 to 4 months or sooner if the bristles become frayed. This ensures optimal cleaning effectiveness.
  4. Special Considerations for Children:

    • Parents should be encouraged to choose appropriately sized toothbrushes for their children and to supervise brushing to ensure proper technique and effectiveness.

Periodontal Medicaments

Periodontal diseases often require adjunctive therapies to traditional mechanical treatments such as scaling and root planing. Various medicaments have been developed to enhance the healing process and control infection in periodontal tissues. This lecture will discuss several periodontal medicaments, their compositions, and their clinical applications.

1. Elyzol

  • Composition:
    • Elyzol is an oil-based gel containing 25% metronidazole. It is formulated with glyceryl mono-oleate and sesame oil.
  • Clinical Use:
    • Elyzol has been found to be equivalent to scaling and root planing in terms of effectiveness for treating periodontal disease.
    • However, no adjunctive effects beyond those achieved with mechanical debridement have been demonstrated.

2. Actisite

  • Composition:

    • Actisite consists of tetracycline-containing fibers.
    • Each fiber has a diameter of 0.5 mm and contains 12.7 mg of tetracycline per 9 inches of fiber.
  • Clinical Use:

    • The fibers are placed directly into periodontal pockets, where they release tetracycline over time, helping to reduce bacterial load and promote healing.

3. Arestin

  • Composition:

    • Arestin contains minocycline, which is delivered as a biodegradable powder in a syringe.
  • Clinical Use:

    • Arestin is indicated for the treatment of periodontal disease and is applied directly into periodontal pockets, where it provides localized antibiotic therapy.

4. Atridox

  • Composition:

    • Atridox contains 10% doxycycline in a syringeable gel system that is biodegradable.
  • Clinical Use:

    • The gel is injected into periodontal pockets, where it solidifies and releases doxycycline over time, aiding in the management of periodontal disease.

5. Dentamycin and Periocline

  • Composition:

    • Both Dentamycin and Periocline contain 2% minocycline hydrochloride.
  • Clinical Use:

    • These products are used similarly to other local delivery systems, providing localized antibiotic therapy to reduce bacterial infection in periodontal pockets.

6. Periochip

  • Composition:

    • Periochip is a biodegradable chip that contains chlorhexidine.
  • Clinical Use:

    • The chip is placed in the gingival crevice, where it releases chlorhexidine over time, providing antimicrobial action and helping to control periodontal disease.

Sutures for Periodontal Flaps

Suturing is a critical aspect of periodontal surgery, particularly when managing periodontal flaps. The choice of suture material can significantly influence healing, tissue adaptation, and overall surgical outcomes.

1. Nonabsorbable Sutures

Nonabsorbable sutures are designed to remain in the tissue until they are manually removed. They are often used in situations where long-term support is needed.

A. Types of Nonabsorbable Sutures

  1. Silk (Braided)

    • Characteristics:
      • Excellent handling properties and knot security.
      • Provides good tissue approximation.
    • Applications: Commonly used in periodontal surgeries due to its ease of use and reliability.
  2. Nylon (Monofilament) (Ethilon)

    • Characteristics:
      • Strong and resistant to stretching.
      • Less tissue reactivity compared to silk.
    • Applications: Ideal for delicate tissues and areas requiring minimal tissue trauma.
  3. ePTFE (Monofilament) (Gore-Tex)

    • Characteristics:
      • Biocompatible and non-reactive.
      • Excellent tensile strength and flexibility.
    • Applications: Often used in guided tissue regeneration procedures and in areas where long-term support is needed.
  4. Polyester (Braided) (Ethibond)

    • Characteristics:
      • High tensile strength and good knot security.
      • Less pliable than silk.
    • Applications: Used in situations requiring strong sutures, such as in flap stabilization.

2. Absorbable Sutures

Absorbable sutures are designed to be broken down by the body over time, eliminating the need for removal. They are often used in periodontal surgeries where temporary support is sufficient.

A. Types of Absorbable Sutures

  1. Surgical Gut

    • Plain Gut (Monofilament)

      • Absorption Time: Approximately 30 days.
      • Characteristics: Made from sheep or cow intestines; provides good tensile strength initially but loses strength quickly.
      • Applications: Suitable for soft tissue approximation where rapid absorption is desired.
    • Chromic Gut (Monofilament)

      • Absorption Time: Approximately 45 to 60 days.
      • Characteristics: Treated with chromium salts to delay absorption; retains strength longer than plain gut.
      • Applications: Used in areas where a longer healing time is expected.
  2. Synthetic Absorbable Sutures

    • Polyglycolic Acid (Braided) (Vicryl, Ethicon)

      • Absorption Time: Approximately 16 to 20 days.
      • Characteristics: Provides good tensile strength and is absorbed predictably.
      • Applications: Commonly used in periodontal and oral surgeries due to its handling properties.
    • Dexon (Davis & Geck)

      • Characteristics: Similar to Vicryl; made from polyglycolic acid.
      • Applications: Used in soft tissue approximation and ligation.
    • Polyglycaprone (Monofilament) (Maxon)

      • Absorption Time: Similar to Vicryl.
      • Characteristics: Offers excellent tensile strength and is absorbed more slowly than other synthetic options.
      • Applications: Ideal for areas requiring longer support during healing.

Gracey Curettes

Gracey curettes are specialized instruments designed for periodontal therapy, particularly for subgingival scaling and root planing. Their unique design allows for optimal adaptation to the complex anatomy of the teeth and surrounding tissues. This lecture will cover the characteristics, specific uses, and advantages of Gracey curettes in periodontal practice.

  • Gracey curettes are area-specific curettes that come in a set of instruments, each designed and angled to adapt to specific anatomical areas of the dentition.

  • Purpose: They are considered some of the best instruments for subgingival scaling and root planing due to their ability to provide excellent adaptation to complex root anatomy.

Specific Gracey Curette Designs and Uses

  1. Gracey 1/2 and 3/4:

    • Indication: Designed for use on anterior teeth.
    • Application: Effective for scaling and root planing in the anterior region, allowing for precise access to the root surfaces.
  2. Gracey 5/6:

    • Indication: Suitable for anterior teeth and premolars.
    • Application: Versatile for both anterior and premolar areas, providing effective scaling in these regions.
  3. Gracey 7/8 and 9/10:

    • Indication: Designed for posterior teeth, specifically for facial and lingual surfaces.
    • Application: Ideal for accessing the buccal and lingual surfaces of posterior teeth, ensuring thorough cleaning.
  4. Gracey 11/12:

    • Indication: Specifically designed for the mesial surfaces of posterior teeth.
    • Application: Allows for effective scaling of the mesial aspects of molars and premolars.
  5. Gracey 13/14:

    • Indication: Designed for the distal surfaces of posterior teeth.
    • Application: Facilitates access to the distal surfaces of molars and premolars, ensuring comprehensive treatment.

Key Features of Gracey Curettes

  • Area-Specific Design: Each Gracey curette is tailored for specific areas of the dentition, allowing for better access and adaptation to the unique contours of the teeth.

  • Offset Blade: Unlike universal curettes, the blade of a Gracey curette is not positioned at a 90-degree angle to the lower shank. Instead, the blade is angled approximately 60 to 70 degrees from the lower shank, which is referred to as an "offset blade." This design enhances the instrument's ability to adapt to the tooth surface and root anatomy.

Advantages of Gracey Curettes

  1. Optimal Adaptation: The area-specific design and offset blade allow for better adaptation to the complex anatomy of the roots, making them highly effective for subgingival scaling and root planing.

  2. Improved Access: The angled blades enable clinicians to access difficult-to-reach areas, such as furcations and concavities, which are often challenging with standard instruments.

  3. Enhanced Efficiency: The design of Gracey curettes allows for more efficient removal of calculus and biofilm from root surfaces, contributing to improved periodontal health.

  4. Reduced Tissue Trauma: The precise design minimizes trauma to the surrounding soft tissues, promoting better healing and patient comfort.

Explore by Exams