Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Condensers/pluggers are instruments used to deliver the forces of compaction to the underlying restorative material. There are

several methods for the application of these forces:

1. Hand pressure: use of this method alone is contraindicated except in a few situations like adapting the first piece of gold to

the convenience or point angles and where the line of force will not permit use of other methods. Powdered golds are also

known to be better condensed with hand pressure. Small condenser points of 0.5 mm in diameter are generally

recommended as they do not require very high forces for their manipulation.

2. Hand malleting: Condensation by hand malleting is a team work in which the operator directs the condenser and moves it

over the surface, while the assistant provides rhythmic blows from the mallet. Long handled condensers and leather faced

mallets (50 gms in weight) are used for this purpose. The technique allows greater control and the condensers can be

changed rapidly when required. However, with the introduction of mechanical malleting, use of this method has decreased

considerably.

3. Automatic hand malleting: This method utilizes a spring loaded instrument that delivers the desired force once the spiral

spring is released. (Disadvantage is that the blow descends very rapidly even before full pressure has been exerted on the

condenser point.

4. Electric malleting (McShirley electromallet): This instrument accommodates various shapes of con-denser points and has a

mallet in the handle itself which remains dormant until wished by the operator to function. The intensity or amplitude

generated can vary from 0.2 ounces to 15 pounds and the frequency can range from 360-3600 cycles/minute.

5. Pneumatic malleting (Hollenback condenser): This is the most recent and satisfactory method first developed by

Dr. George M. Hollenback. Pneumatic mallets consist of vibrating nit condensers and detachable tips run by

compressed air. The air is carried through a thin rubber tubing attached to the hand piece. Controlling the air

pressure by a rheostat nit allows adjusting the frequency and amplitude of condensation strokes. The construction

of the handpiece is such that the blow does not fall until pressure is placed on the condenser point. This continues

until released. Pneumatic mallets are available with both straight and angled for handpieces.

Atraumatic Restorative Treatment (ART) is a minimally invasive approach to dental cavity management and restoration. Developed as a response to the limitations of traditional drilling and filling methods, ART aims to preserve as much of the natural tooth structure as possible while effectively managing caries. The technique was pioneered in the mid-1980s by Dr. Frencken in Tanzania as a way to address the high prevalence of dental decay in a setting with limited access to traditional dental equipment and materials. The term "ART" was coined by Dr. McLean to reflect the gentle and non-traumatic nature of the treatment.

ART involves the following steps:

1. Cleaning and Preparation: The tooth is cleaned with a hand instrument to remove plaque and debris.
2. Moisture Control: The tooth is kept moist with a gel or paste to prevent desiccation and maintain the integrity of the tooth structure.
3. Carious Tissue Removal: Soft, decayed tissue is removed manually with hand instruments, without the use of rotary instruments or drills.
4. Restoration: The prepared cavity is restored with an adhesive material, typically glass ionomer cement, which chemically bonds to the tooth structure and releases fluoride to prevent further decay.

Indications for ART include:

- Small to medium-sized cavities in posterior teeth (molars and premolars).
- Decay in the initial stages that has not yet reached the dental pulp.
- Patients who may not tolerate or have access to traditional restorative methods, such as those in remote or underprivileged areas.
- Children or individuals with special needs who may benefit from a less invasive and less time-consuming approach.
- As part of a public health program focused on preventive and minimal intervention dentistry.

Contraindications for ART include:

- Large cavities that extend into the pulp chamber or involve extensive tooth decay.
- Presence of active infection, swelling, abscess, or fistula around the tooth.
- Teeth with poor prognosis or severe damage that require more extensive treatment such as root canal therapy or extraction.
- Inaccessible cavities where hand instruments cannot effectively remove decay or place the restorative material.

The ART technique is advantageous in several ways:

- It reduces the need for local anesthesia, as it is often painless.
- It preserves more of the natural tooth structure.
- It is less technique-sensitive and does not require advanced equipment.
- It is relatively quick and can be performed in a single visit.
- It is suitable for use in areas with limited resources and less developed dental infrastructure.
- It reduces the risk of microleakage and secondary caries.

However, ART also has limitations, such as reduced longevity compared to amalgam or composite fillings, especially in large restorations or high-stress areas, and the need for careful moisture control during the procedure to ensure proper bonding of the material. Additionally, ART is not recommended for all cases and should be considered on an individual basis, taking into account the patient's oral health status and the specific requirements of each tooth.

Light-Cure Composites

Light-cure composites are resin-based materials that harden when exposed to specific wavelengths of light. They are widely used in dental restorations due to their aesthetic properties, ease of use, and ability to bond to tooth structure.

Key Components:

  • Diketone Photoinitiator: The primary photoinitiator used in light-cure composites is camphoroquinone. This compound plays a crucial role in the polymerization process.
  • Visible Light Spectrum: The curing process is activated by blue light, typically in the range of 400-500 nm.

2. Curing Lamps: Halogen Bulbs and QTH Lamps

Halogen Bulbs

  • Efficiency: Halogen bulbs maintain a constant blue light efficiency for approximately 100 hours under normal use. This consistency is vital for reliable curing of dental composites.
  • Step Curing: Halogen lamps allow for a technique known as step curing, where the composite is first cured at a lower energy level and then stepped up to higher energy levels. This method can enhance the properties of the cured material.

Quartz Tungsten Halogen (QTH) Curing Lamps

  • Irradiance Requirements: To adequately cure a 2 mm thick specimen of resin-based composite, an irradiance value of at least 300 mW/cm² to 400 mW/cm² is necessary. This ensures that the light penetrates the composite effectively.
  • Micro-filled vs. Hybrid Composites: Micro-filled composites require twice the irradiance value compared to hybrid composites. This is due to their unique composition and light transmission properties.

3. Mechanism of Visible Light Curing

The curing process involves several key steps:

Photoinitiation

  • Absorption of Light: When camphoroquinone absorbs blue light in the 400-500 nm range, it becomes excited and forms free radicals.
  • Free Radical Formation: These free radicals are essential for initiating the polymerization process, leading to the hardening of the composite material.

Polymerization

  • Chain Reaction: The free radicals generated initiate a chain reaction that links monomers together, forming a solid polymer network.
  • Maximum Absorption: The maximum absorption wavelength of camphoroquinone is at 468 nm, which is optimal for effective curing.

4. Practical Considerations in Curing

Curing Depth

  • The depth of cure is influenced by the type of composite used, the thickness of the layer, and the irradiance of the light source. It is crucial to ensure that the light penetrates adequately to achieve a complete cure.

Operator Technique

  • Proper technique in positioning the curing light and ensuring adequate exposure time is essential for achieving optimal results. Inadequate curing can lead to compromised mechanical properties and increased susceptibility to wear and staining.

Rotational Speeds of Dental Instruments

1. Measurement of Rotational Speed

Revolutions Per Minute (RPM)

  • Definition: The rotational speed of dental instruments is measured in revolutions per minute (rpm), indicating how many complete rotations the instrument makes in one minute.
  • Importance: Understanding the rpm is essential for selecting the appropriate instrument for specific dental procedures, as different speeds are suited for different tasks.


2. Speed Ranges of Dental Instruments

A. Low-Speed Instruments

  • Speed Range: Below 12,000 rpm.
  • Applications:
    • Finishing and Polishing: Low-speed handpieces are commonly used for finishing and polishing restorations, as they provide greater control and reduce the risk of overheating the tooth structure.
    • Cavity Preparation: They can also be used for initial cavity preparation, especially in areas where precision is required.
  • Instruments: Low-speed handpieces, contra-angle attachments, and slow-speed burs.

B. Medium-Speed Instruments

  • Speed Range: 12,000 to 200,000 rpm.
  • Applications:
    • Cavity Preparation: Medium-speed handpieces are often used for more aggressive cavity preparation and tooth reduction, providing a balance between speed and control.
    • Crown Preparation: They are suitable for preparing teeth for crowns and other restorations.
  • Instruments: Medium-speed handpieces and specific burs designed for this speed range.

C. High-Speed Instruments

  • Speed Range: Above 200,000 rpm.
  • Applications:
    • Rapid Cutting: High-speed handpieces are primarily used for cutting hard dental tissues, such as enamel and dentin, due to their ability to remove material quickly and efficiently.
    • Cavity Preparation: They are commonly used for cavity preparations, crown preparations, and other procedures requiring rapid tooth reduction.
  • Instruments: High-speed handpieces and diamond burs, which are designed to withstand the high speeds and provide effective cutting.


3. Clinical Implications

A. Efficiency and Effectiveness

  • Material Removal: Higher speeds allow for faster material removal, which can reduce chair time for patients and improve workflow in the dental office.
  • Precision: Lower speeds provide greater control, which is essential for delicate procedures and finishing work.

B. Heat Generation

  • Risk of Overheating: High-speed instruments can generate significant heat, which may lead to pulpal damage if not managed properly. Adequate cooling with water spray is essential during high-speed procedures to prevent overheating of the tooth.

C. Instrument Selection

  • Choosing the Right Speed: Dentists must select the appropriate speed based on the procedure being performed, the type of material being cut, and the desired outcome. Understanding the characteristics of each speed range helps in making informed decisions.

Supporting Cusps in Dental Occlusion

Supporting cusps, also known as stamp cusps, centric holding cusps, or holding cusps, play a crucial role in dental occlusion and function. They are essential for effective chewing and maintaining the vertical dimension of the face. This guide will outline the characteristics, functions, and clinical significance of supporting cusps.

Supporting Cusps: These are the cusps of the maxillary and mandibular teeth that make contact during maximum intercuspation (MI) and are primarily responsible for supporting the vertical dimension of the face and facilitating effective chewing.

Location

  • Maxillary Supporting Cusps: Located on the lingual occlusal line of the maxillary teeth.
  • Mandibular Supporting Cusps: Located on the facial occlusal line of the mandibular teeth.

Functions of Supporting Cusps

A. Chewing Efficiency

  • Mortar and Pestle Action: Supporting cusps contact the opposing teeth in their corresponding faciolingual center on a marginal ridge or a fossa, allowing them to cut, crush, and grind fibrous food effectively.
  • Food Reduction: The natural tooth form, with its multiple ridges and grooves, aids in the reduction of the food bolus during chewing.

B. Stability and Alignment

  • Preventing Drifting: Supporting cusps help prevent the drifting and passive eruption of teeth, maintaining proper occlusal relationships.

Characteristics of Supporting Cusps

Supporting cusps can be identified by the following five characteristic features:

  1. Contact in Maximum Intercuspation (MI): They make contact with the opposing tooth during MI, providing stability in occlusion.

  2. Support for Vertical Dimension: They contribute to maintaining the vertical dimension of the face, which is essential for proper facial aesthetics and function.

  3. Proximity to Faciolingual Center: Supporting cusps are located nearer to the faciolingual center of the tooth compared to nonsupporting cusps, enhancing their functional role.

  4. Potential for Contact on Outer Incline: The outer incline of supporting cusps has the potential for contact with opposing teeth, facilitating effective occlusion.

  5. Broader, Rounded Cusp Ridges: Supporting cusps have broader and more rounded cusp ridges than nonsupporting cusps, making them better suited for crushing food.

Clinical Significance

A. Occlusal Relationships

  • Maxillary vs. Mandibular Arch: The maxillary arch is larger than the mandibular arch, resulting in the supporting cusps of the maxilla being more robust and better suited for crushing food than those of the mandible.

B. Lingual Tilt of Posterior Teeth

  • Height of Supporting Cusps: The lingual tilt of the posterior teeth increases the relative height of the supporting cusps compared to nonsupporting cusps, which can obscure central fossa contacts.

C. Restoration Considerations

  • Restoration Fabrication: During the fabrication of restorations, it is crucial to ensure that supporting cusps do not contact opposing teeth in a manner that results in lateral deflection. Instead, restorations should provide contacts on plateaus or smoothly concave fossae to direct masticatory forces parallel to the long axes of the teeth.

Electrochemical Corrosion

Electrochemical corrosion is a significant phenomenon that can affect the longevity and integrity of dental materials, particularly in amalgam restorations. Understanding the mechanisms of corrosion, including the role of electromotive force (EMF) and the specific reactions that occur at the margins of restorations, is essential for dental clinics

1. Electrochemical Corrosion and Creep

A. Definition

  • Electrochemical Corrosion: This type of corrosion occurs when metals undergo oxidation and reduction reactions in the presence of an electrolyte, leading to the deterioration of the material.

B. Creep at Margins

  • Creep: In the context of dental amalgams, creep refers to the slow, permanent deformation of the material at the margins of the restoration. This can lead to the extrusion of material at the margins, compromising the seal and integrity of the restoration.

C. Mercuroscopic Expansion

  • Mercuroscopic Expansion: This phenomenon occurs when mercury from the amalgam (specifically from the Sn7-8 Hg phase) reacts with Ag3Sn particles. The reaction produces further expansion, which can exacerbate the issues related to creep and marginal integrity.

2. Electromotive Force (EMF) Series

A. Definition

  • Electromotive Force (EMF) Series: The EMF series is a classification of elements based on their tendency to dissolve in water. It ranks metals according to their standard electrode potentials, which indicate how easily they can be oxidized.

B. Importance in Corrosion

  • Dissolution Tendencies: The EMF series helps predict which metals are more likely to corrode when in contact with other metals or electrolytes. Metals higher in the series have a greater tendency to lose electrons and dissolve, making them more susceptible to corrosion.

C. Calculation of Potential Values

  • Standard Conditions: The potential values in the EMF series are calculated under standard conditions, specifically:
    • One Atomic Weight: Measured in grams.
    • 1000 mL of Water: The concentration of ions is considered in a liter of water.
    • Temperature: Typically at 25°C (298 K).

3. Implications for Dental Practice

A. Material Selection

  • Understanding the EMF series can guide dental professionals in selecting materials that are less prone to corrosion when used in combination with other metals, such as in restorations or prosthetics.

B. Prevention of Corrosion

  • Proper Handling: Careful handling and placement of amalgam restorations can minimize the risk of electrochemical corrosion.
  • Avoiding Dissimilar Metals: Reducing the use of dissimilar metals in close proximity can help prevent galvanic corrosion, which can occur when two different metals are in contact in the presence of an electrolyte.

C. Monitoring and Maintenance

  • Regular monitoring of restorations for signs of marginal breakdown or corrosion can help in early detection and intervention, preserving the integrity of dental work.

Gallium Alloys as Amalgam Substitutes

  • Gallium Alloys: Gallium alloys, such as those made with silver-tin (Ag-Sn) particles in gallium-indium (Ga-In), represent a potential substitute for traditional dental amalgam.
  • Melting Point: Gallium has a melting point of 28°C, allowing it to remain in a liquid state at room temperature when combined with small amounts of other elements like indium.

Advantages

  • Mercury-Free: The substitution of Ga-In for mercury in amalgam addresses concerns related to mercury exposure, making it a safer alternative for both patients and dental professionals.

Explore by Exams