NEET MDS Lessons
Prosthodontics
The clinical implications of an edentulous stomatognathic system are considered under the following factors:
(1) modi?cations in areas of support .
(2) functional and parafunctional considerations.
(3) changes in morphologic face height, and temporomandibular joint (TMJ).
(4) cosmetic changes and adaptive responses
Support mechanism for complete dentures
Mucosal support and masticatory loads
- The area of mucosa available to receive the load from complete dentures is limited when compared with the corresponding areas of support available for natural dentitions.
- The mean denture bearing area to be 22.96 cm2 in the edentulous maxillae and approximately 12.25 cm2 in an edentulous mandible
- In fact, any disturbance of the normal metabolic processes may lower the upper limit of mucosal tolerance and initiate in?ammation
Residual ridge
The residual ridge consists of denture-bearing mucosa, the submucosa and periosteum, and the underlying residual alveolar bone.
The alveolar bone supporting natural teeth receives tensile loads through a large area of periodontal ligament, whereas the edentulous residual ridge receives vertical, diagonal, and horizontal loads applied by a denture with a surface area much smaller than the total area of the periodontal ligaments of all the natural teeth that had been present.
There are two physical factors involved in denture retention that are under the control of the dentist
- The maximal extension of the denture base
- maximal intimate contact of the denture base and its basal seat
- The buccinator, the orbicularis oris, and the intrinsic and extrinsic muscles of the tongue are the key muscles that the dentist harnesses to achieve this objective by means of impression techniques.
- The design of the labial buccal and lingual polished surface of the denture and the form of the dental arch are considered in balancing the forces generated by the tongue and perioral musculature.
Function: mastication and other mandibular movements
Mastication consists of a rhythmic separation and apposition of the jaws and involves biophysical and biochemical processes, including the use of the lips, teeth, cheeks, tongue, palate, and all the oral structures to prepare food for swallowing.
- The maximal bite force in denture wearers is ?ve to six times less than that in dentulous individuals.
- The pronounced differences between persons with natural teeth and patients with complete dentures are conspicuous in this functional context:
(1) the mucosal mechanism of support as opposed to support by the periodontium ;
(2) the movements of the dentures during mastication;
(3) the progressive changes in maxillomandibular relations and the eventual migration of dentures
(4) the different physical stimuli to the sensor motor systems.
Parafunctional considerations
- Parafunctional habits involving repeated or sustained occlusion of the teeth can be harmful to the teeth or other components of the masticatory system.
- Teeth clenching is common and is a frequent cause of the complaint of soreness of the denture-bearing mucosa.
- In the denture wearer, parafunctional habits can cause additional loading on the denture-bearing tissues
Force generated during mastication and parafunction
Functional (Mastication)
Direction -> Mainly vertical
Duration and magnitude -> Intermittent and light diurnal only
Parafunction
Direction -> Frequently horizontalas well as vertical
Duration and magnitude -> Prolonged, possibly excessive Both diurnal and nocturnal
Changes in morphology (face height), occlusion, and the TMJs
The reduction of the residual ridges under complete dentures and the accompanying reduction in vertical dimension of occlusion tend to cause a reduction in the total face height and a resultant mandibular prognathism.
In complete denture wearers, the mean reduction in height of the mandibular residual alveolar ridge measured in the anterior region may be approximately four times greater than the mean reduction occurring in the maxillary residual alveolar process
Occlusion
- In complete denture prosthodontics, the position of planned maximum intercuspation of teeth is established to coincide with the patient’s centric relation.
-The coincidence of centric relation and centric occlusion is consequently referred to as centric relation occlusion (CRG).
- Centric relation at the established vertical dimension has potential for change. This change is brought about by alterations indenture-supporting tissues and facial height, as well as by morphological changes in the TMJs.
TMJ changes
impaired dental ef?ciency resulting from partial tooth loss and absence of or incorrect prosthodontic treatment can in?uence the outcome of temporomandibular disorders.
Aesthetic, behavioral, and adaptive response
Aesthetic changes associated with the edentulous state.
- Deepening of nasolabial groove
- Loss of labiodentals angle
- Narrowing of lips
- Increase in columellae philtral angle
- Prognathic appearance
Impression making is a critical step in prosthodontics and orthodontics, as it captures the details of the oral cavity for the fabrication of dental prostheses. There are several techniques for making impressions, each with its own principles and applications. Here, we will discuss three primary impression-making techniques: Mucostatic, Mucocompressive, and Selective Pressure Impression Techniques.
1. Mucostatic or Passive Impression Technique
- Proposed by: Richardson and Henry Page
- Materials Used: Plaster of Paris and Alginate
- Key Features:
- Relaxed Condition: Records the oral mucous membrane and jaws in a normal, relaxed condition.
- Tray Design: Utilizes an oversized tray to accommodate the relaxed tissues.
- Tissue Contact: Achieves intimate contact of the tissues with the denture base, which enhances stability.
- Peripheral Seal: This technique has a poor peripheral seal, which can affect retention.
- Outcome: The resulting denture will have good stability but poor retention due to the lack of a proper seal.
2. Mucocompressive Impression Technique
- Proposed by: Carole Jones
- Materials Used: Impression compound and Zinc Oxide Eugenol (ZoE)
- Key Features:
- Functional Recording: Records the oral tissues in a functional and displaced form, capturing the active state of the tissues.
- Retention: Provides good retention due to the compression of the tissues during the impression process.
- Displacement Issues: Dentures made using this technique may tend to get displaced due to tissue rebound when the tissues return to their resting state after the impression is taken.
3. Selective Pressure Impression Technique
- Proposed by: Boucher
- Materials Used: Special tray with Zinc Oxide Eugenol (ZoE) wash impression
- Key Features:
- Stress Distribution: Loads acting on the denture are transmitted to the stress-bearing areas of the oral tissues.
- Tray Design: A special tray is designed such that the tissues contacted by the tray are recorded under pressure, while the tissues not contacted by the tray are recorded in a state of rest.
- Balanced Recording: This technique allows for a more balanced impression, capturing both the functional and relaxed states of the oral tissues.
Arrangement of Teeth in Complete Dentures
The arrangement of teeth in complete dentures is a critical aspect of prosthodontics that affects both the function and aesthetics of the prosthesis. The following five principal factors must be considered when arranging teeth for complete dentures:
1. Position of the Arch
- Definition: The position of the arch refers to the spatial relationship of the maxillary and mandibular dental arches.
- Considerations:
- The relationship between the arches should be established based on the patient's occlusal plane and the anatomical landmarks of the residual ridges.
- Proper positioning ensures that the dentures fit well and function effectively during mastication and speech.
- The arch position also influences the overall balance and stability of the denture.
2. Contour of the Arch
- Definition: The contour of the arch refers to the shape and curvature of the dental arch.
- Considerations:
- The contour should mimic the natural curvature of the dental arch to provide a comfortable fit and proper occlusion.
- The arch contour affects the positioning of the teeth, ensuring that they align properly with the opposing arch.
- A well-contoured arch enhances the esthetics and function of the denture, allowing for effective chewing and speaking.
3. Orientation of the Plane
- Definition: The orientation of the plane refers to the angulation of the occlusal plane in relation to the horizontal and vertical planes.
- Considerations:
- The occlusal plane should be oriented to facilitate proper occlusion and function, taking into account the patient's facial features and anatomical landmarks.
- The orientation affects the alignment of the teeth and their relationship to the surrounding soft tissues.
- Proper orientation helps in achieving balanced occlusion and minimizes the risk of denture displacement during function.
4. Inclination of Occlusion
- Definition: The inclination of occlusion refers to the angulation of the occlusal surfaces of the teeth in relation to the vertical axis.
- Considerations:
- The inclination should be designed to allow for proper interdigitation of the teeth during occlusion.
- It influences the distribution of occlusal forces and the overall stability of the denture.
- The inclination of occlusion should be adjusted based on the patient's functional needs and the type of occlusion being utilized (e.g., balanced, monoplane, or lingualized).
5. Positioning for Esthetics
- Definition: Positioning for esthetics involves arranging the teeth in a way that enhances the patient's facial appearance and smile.
- Considerations:
- The arrangement should consider the patient's age, gender, and facial features to create a natural and pleasing appearance.
- The size, shape, and color of the teeth should be selected to match the patient's natural dentition and facial characteristics.
- Proper positioning for esthetics not only improves the appearance of the dentures but also boosts the patient's confidence and satisfaction with their prosthesis.
Kennedy's Classification is a system used in dentistry to categorize the
edentulous spaces (areas without teeth) in the mouth of a patient who is fully
or partially edentulous. This classification system helps in planning the
treatment, designing the dentures, and predicting the outcomes of denture
therapy. It was developed by Dr. Edward Kennedy in 1925 and is widely used by
dental professionals.
The classification is based on the relationship between the remaining teeth, the
residual alveolar ridge, and the movable tissues of the oral cavity. It is
particularly useful for patients who are wearing or will be wearing complete or
partial dentures.
There are four main classes of Kennedy's Classification:
1. Class I: In this class, the patient has a bilateral edentulous area with no
remaining teeth on either side of the arch. This means that the patient has a
full denture on the upper and lower jaws with no natural tooth support.
2. Class II: The patient has a unilateral edentulous area with natural teeth
remaining only on one side of the arch. This could be either the upper or lower
jaw. The edentulous side has a complete denture that is supported by the teeth
on the opposite side and the buccal (cheek) and lingual (tongue) tissues.
3. Class III: There is a unilateral edentulous area with natural teeth remaining
on both sides of the arch, but the edentulous area does not include the anterior
(front) teeth. This means the patient has a partial denture on one side of the
arch, with the rest of the teeth acting as support for the denture.
4. Class IV: The patient has a unilateral edentulous area with natural teeth
remaining only on the anterior region of the edentulous side. The posterior
(back) section of the same side is missing, and there may or may not be teeth on
the opposite side. This situation requires careful consideration for the design
of the partial denture to ensure stability and retention.
Each class is further divided into subcategories (A, B, and C) to account for
variations in the amount of remaining bone support and the presence or absence
of undercuts, which are areas where the bone curves inward and can affect the
stability of the denture.
- Class I (A, B, C): Variations in the amount of bone support and presence of
undercuts in the fully edentulous arches.
- Class II (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth on the opposite side.
- Class III (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth on the same side, but not in
the anterior region.
- Class IV (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth remaining only in the
anterior region of the edentulous side.
Understanding a patient's Kennedy's Classification helps dentists and dental
technicians to create well-fitting and functional dentures, which are crucial
for the patient's comfort, speech, chewing ability, and overall oral health.
Understanding the anatomical considerations for upper (maxillary) and lower (mandibular) dentures is crucial for successful denture fabrication and fitting. Proper knowledge of stress-bearing areas, retentive areas, and relief areas helps in achieving optimal retention, stability, and comfort for the patient.
Maxilla
Stress Bearing Areas
-
Primary Stress Bearing Area:
- Residual Alveolar Ridge: The primary area where the forces of mastication are transmitted.
-
Secondary Stress Bearing Areas:
- Rugae: The folds in the anterior hard palate that provide additional support.
- Anterior Hard Palate: The bony part of the roof of the mouth.
- Maxillary Tuberosity: The rounded area at the back of the maxilla that aids in support.
-
Tertiary Stress Bearing Area and Secondary Retentive Area:
- Posteriolateral Part of Hard Palate: Provides additional support and retention.
Relieving Areas
- Incisive Papilla: A small elevation located behind the maxillary central incisors; important to relieve pressure.
- Mid Palatine Raphe: The midline ridge of the hard palate; should be relieved to avoid discomfort.
- Cuspid Eminence: The bony prominence associated with the canine teeth; requires relief.
- Fovea Palatine: Small depressions located posterior to the hard palate; should be considered for relief.
Primary Retentive Area
- Posterior Palatal Seal Area: The area at the posterior border of the maxillary denture that aids in retention by creating a seal.
Mandible
Stress Bearing Areas
-
Primary Stress Bearing Area:
- Buccal Shelf Area: The area between the residual ridge and the buccal vestibule; provides significant support.
-
Secondary Stress Bearing Area:
- Slopes of Edentulous Ridge: The inclined surfaces of the residual ridge that can bear some stress.
Retentive Areas
-
Primary Retentive and Primary Peripheral Seal Area:
- Retromolar Pad: The area behind the last molar that provides retention and support.
-
Secondary Peripheral Seal Area:
- Anterior Lingual Border: The area along the anterior border of the lingual vestibule that aids in retention.
Relief Areas
- Crest of Residual Ridge: The top of the ridge should be relieved to prevent pressure sores.
- Mental Foramen: The opening for the mental nerve; should be avoided to prevent discomfort.
- Mylohyoid Ridge: The bony ridge along the mandible that may require relief.
Posterior Palatal Seal (PPS)
The posterior palatal seal is critical for ensuring a complete seal, which enhances the retention of the maxillary denture.
Functions of the Posterior Palatal Seal
- Displacement of Soft Tissues: Slightly displaces the soft tissues at the distal end of the denture to ensure a complete seal.
- Prevention of Food Ingress: Prevents food and saliva from entering beneath the denture base.
- Control of Impression Material: Prevents excess impression material from running down the patient's throat.
Vibrating Lines
-
Vibrating Line: An imaginary line that passes from one pterygomaxillary notch to the other, located 2 mm in front of the fovea palatine, always on the soft palate. The distal end of the denture should be positioned 1-2 mm posterior to this line.
-
Anterior Vibrating Line:
- Located at the junction between the immovable tissues of the hard palate and the slightly movable tissues of the soft palate.
- Identified by asking the patient to say "ah" in short vigorous bursts or performing the Valsalva maneuver.
- The line has a cupid bow shape.
-
Posterior Vibrating Line:
- Located at the junction of the soft palate that shows limited movement and the soft palate that shows marked movement.
The mental attitude of patients towards complete dentures plays a significant role in the success of their treatment. Understanding these attitudes can help dental professionals tailor their approach to meet the needs and expectations of their patients. Here are the four primary mental attitudes that patients may exhibit:
1. Philosophical (Ideal Attitude)
- Characteristics:
- Accepts the dentist's judgment without question.
- Exhibits a rational, sensible, calm, and composed disposition.
- Open to discussing treatment options and understands the importance of oral health.
- Implications for Treatment:
- This type of patient is likely to follow the dentist's recommendations and cooperate throughout the treatment process.
- They are more likely to have realistic expectations and be satisfied with the outcomes.
2. Indifferent
- Characteristics:
- Shows little concern for their oral health.
- Seeks treatment primarily due to pressure from family or friends.
- Requires additional time and education to understand the importance of dental care.
- Their attitude can be discouraging to dentists, as they may not fully engage in the treatment process.
- Implications for Treatment:
- Dentists may need to invest extra effort in educating these patients about the benefits of complete dentures and the importance of oral health.
- Building rapport and trust is essential to encourage a more proactive attitude towards treatment.
3. Critical/Exacting
- Characteristics:
- Has previously had multiple sets of complete dentures and tends to find fault with everything.
- Often has high expectations and may be overly critical of the treatment process.
- May require medical consultation due to previous experiences or health concerns.
- Implications for Treatment:
- Dentists should be prepared to address specific concerns and provide detailed explanations about the treatment plan.
- It is important to manage expectations and ensure that the patient understands the limitations and possibilities of denture treatment.
4. Skeptical/Hysterical
- Characteristics:
- Has had negative experiences with previous treatments, leading to doubt and skepticism about the current treatment.
- Often presents with poor oral health, resorbed ridges, and other unfavorable conditions.
- May exhibit anxiety or hysteria regarding dental procedures.
- Implications for Treatment:
- Building trust and confidence is crucial for these patients. Dentists should take the time to listen to their concerns and provide reassurance.
- A gentle and empathetic approach is necessary to help alleviate fears and encourage cooperation.
- It may be beneficial to involve them in the decision-making process to empower them and reduce anxiety.
Applegate's Classification is a system used to categorize edentulous
(toothless) arches in preparation for denture construction. The classification
is based on the amount and quality of the remaining alveolar ridge, the
relationship of the ridge to the residual ridges, and the presence of undercuts.
The system is primarily used in the context of complete denture prosthodontics
to determine the best approach for achieving retention, stability, and support
for the dentures.
Applegate's Classification for edentulous arches:
1. Class I: The alveolar ridge has a favorable arch form and sufficient height
and width to provide adequate support for a complete denture without the need
for extensive modifications. This is the ideal scenario for denture
construction.
2. Class II: The alveolar ridge has a favorable arch form but lacks the
necessary height or width to provide adequate support. This may require the use
of denture modifications such as flanges to enhance retention and support.
3. Class III: The ridge lacks both height and width, and there may be undercuts
or excessive resorption. In this case, additional procedures such as ridge
augmentation or the use of implants might be necessary to improve the foundation
for the denture.
4. Class IV: The ridge has an unfavorable arch form, often with significant
resorption, and may require extensive surgical procedures or adjuncts like
implants to achieve a functional and stable denture.
5. Class V: This is the most severe classification where the patient has no
residual alveolar ridge, possibly due to severe resorption, trauma, or surgical
removal. In such cases, the creation of a functional and stable denture may be
highly challenging and might necessitate advanced surgical procedures and/or the
use of alternative prosthetic options like over-dentures with implant support.
It's important to note that this classification is a guide, and individual
patient cases may present with a combination of features from different classes
or may require customized treatment plans based on unique anatomical and
functional requirements.