Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Casting ring

CASTING RING LINERS

Most common way to provide investment expansion is by using a liner in the casting ring .Traditionally asbestose was used .
Non asbestose ring liner used are :
1) Aluminosilicate ceramic liner .
2) Cellulose paper liner .

The aim of using a resilient liner is to

-. allow different types of investmentbexpansion (act as a cushion)
_. facilitate venting during casting procedure.
_. facilitate the removal of the investment block after casting.&. prevent the distortion by permitting the outward expansion of the mold.
The casting ring holds the investment in place during setting and restricts the expansion of the mold. Normally a resilient liner is placed inside the ring leaving about 2-3 mm from both ends to allow for supporting contact of the investment with the casting ring.

Purpose of Casting Ring Liner

Ringer liner is he most commonly used technique to provide investment expansion. To ensure uniform expansion , liner is cut to fit the inside diameter of the casting ring with no overlap. 

Non-asbestos Ring Liners: Ceramic (aluminum silicate) Cellulose (paper) Ceramic-cellulose combination Safety of the ceramic ring liners remains uncertain, because aluminum silicate also appears capable of producing hazardous-size respirable particles
 

ACRYLIC RESINS

Use. Acrylic (unfilled) resins are used as temporary crown material. Temporary crowns are placed to protect the crown preparation and provide patient comfort during the time the permanent crown is being constructed

Investment Materials

Investment is mold-making material

Applications

a. Mold-making materials for casting alloys
b. Mold-making materials for denture production

Classification

a. Gypsum-bonded investments (based on gypsum products for matrix)

b. Phosphate-bonded investments

c. Silicate-bonded investments

Components

a. Liquid-water or other reactant starts formation of matrix binder by reacting with reactant powder
b. Powder-reactant powder, filler, or modifiers

Manipulation

a. P/L mixed and placed in container around wax pattern
b. After setting, the investment is heated to eliminate the wax pattern in preparation for casting
 

Mechanical properties

1.  Resolution of forces

Uniaxial (one-dimensional) forces-compression, tension, and shear

Complex forces-torsion, flexion. And diametral

2. Normalization of forces and deformatations

Stress

 Applied force (or material’s resistance to force) per unit area

Stress-force/area (MN/m2)

Strain

Change in length per unit of length because of force

Strain-(L- Lo)/(Lo); dimensionless units

3. Stress-strain diagrams

Plot of stress (vertical) versus strain (horizontal)

  • Allows convenient comparison of materials
  • Different curves for compression, tension, and shear
  • Curves depend on rate of testing and temperature

4. Analysis of curves

  • Elastic behavior
    • Initial response to stress is elastic strain
    • Elastic modulus-slope of first part of curve and represents stiffness of material or the resistance to deformation under force
    • Elastic limit (proportional limit)- stress above which the material no longer behaves totally elastically
    • Yield strength-stress that is an estimate of the elastic limit at 0.002 permanent strain
    • Hardness-value on a relative scale that estimates the elastic limit in terms of a material’s resistance to indentation (Knoop hardness scale, Diamond pyramid, Brinnell, Rockwell hardness scale, Shore A hardness scale, Mohs hardness scale

 

  • Resilience-area under the stress strain curve up to the elastic limit (and it estimates the total elastic energy that can be absorbed before the onset of plastic deformation)
  • Elastic and plastic behavior
  • Beyond the stress level of the elastic  limit, there is a combination of elastic  and plastic strain
  • Ultimate strength-highest stress  reached before fracture; the ultimate compressive strength is greater than the ultimate shear strength and the ultimate tensile strength
  • Elongation (percent elongation)- percent change in length up to the point of fracture = strain x 100%
  • Brittle materials-<5% elongation at fracture
  • Ductile materials->5% elongation  at fracture
  • Toughness-area under the stress strain  curve up to the point of fracture (it estimates the total energy absorbed up to fracture)
  • Time-dependent behavior

the faster a stress is applied, the more likely a material is to store the energy elastically and not plastically

  • Creep-strain relaxation
  • Stress relaxation

Cement liners

Applications (if remaining dentin thickness is <0.5 mm)

o    Used for thermal insulation where cavity preparation is close to the pulp
o    Used for delivering medicaments to the pulp

•    Calcium hydroxide stimulates reparative dentin or
•    Eugenol relieves pain by desensitizing nerves
•    Used to deliver F ion to enamel and dentin

Components

o    Paste of calcium hydroxide reactant powder, ethyl toluene sulfonamide dispersant, zinc oxide filler, and zinc stearate radiopacifier
o    Paste of glycol salicylate reactant liquid, titanium dioxide filler powder, and calcium tungstenate radiopacifier

Reaction

Chemical reaction of calcium ions with salicylate to form methylsalicylate salts Moisture absorbed to allow calcium hydroxide to dissociate into ions to react with salicylate Mixture sets from outside surface to inside as water diffuses

Manipulation

Dentin should not be dehydrated or material will not setMix drop of each paste together for 5 secondsApply material to dentin and allow I to 2 minutes to set

Properties

o    Physical-good thermal and electrical insulator
o    Chemical-poor resistance to water solubility and may dissolve
o    Mechanical-low compressive strength (100 to 500 psi)
o    Biologic-releases calcium hydroxide constituents, which diffuse toward the pulp and stimulate
o    reparative dentin formation

Mercury bioactivity

  • Metallic mercury is the least toxic from and is absorbed primarily through the lungs rather than the GI tract or skin
  • Mercury in the body may come from air, water, food. dental (a low amount). Or medical sources
  •  Half life for mercury elimination from body is 55 days .-
  • mercury toxicity is <50 µm / m3 on average per 40-hour work week.
  • Mercury hypersensitivity is estimated as less than 1 per 100,000,000 persons
  • Indium-containing amalgams can have lower Hg vapor pressures than conventional dental amalgam

Waxes

Many different waxes are used in dentistry. The composition, form, and color of each wax are designed to facilitate its use and to produce the best possible results.

Applications

o    Making impressions
o    Registering of tooth or soft tissue positions
o    Creating restorative patterns for lab fabrication
o    Aiding in laboratory procedures

Classification

a. Pattern waxes-inlay, casting, and baseplate waxes
b. Impression waxes-corrective and biteplate waxes
c. Processing waxes-boxing, utility, and sticky waxes

Types

1) Inlay wax-used to create a pattern for inlay, onlay or crown for subsequent investing and casting in a metal alloy.
2) Casting wax-used to create a pattern for metallic framework for a removable partial denture
3) Baseplate wax-used to establish the vertical dimension. plane of occlusion. and  initial arch form of a complete denture
4) Corrective impression wax-used to form a registry pattern of soft tissues on an impression
5) Bite registration wax-used to form a registry pattern for the occlusion of opposing models or casts
6) Boxing wax-used to form a box around an impression before pouring a  model or cast
7) Utility wax -soft pliable adhesive wax for modifying appliances, such as alginate impression trays
8) Sticky  wax-sticky when melted and used to temporarily adhere pieces of metal or resin in laboratory procedures


Components

a. Base waxes-hydrocarbon (paraffin) ester waxes    
b. Modifier waxes-carnauba, ceresin, bees wax, rosin, gum dammar, or microcrystalline waxes
c. Additives-colorants

Reaction-waxes are thermoplastic

Properties

Physical

a. High coefficients of thermal expansion and contraction
b. Insulators and so, cool unevenly; should be waxed in increments to allow heat dissipation

Chemical

a. Degrade prematurely if overheated
b. Designed to degrade into CO2and H2Oduring burnout

Mechanical-stiffness, hardness, and strength depend on modifier waxes used
 

Explore by Exams