Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Anatomy

Innervation of the Skin

  • Innervation of the skin is mainly through the three branches of the trigeminal nerve (CN V).
  • Some skin over the angle of the mandible and anterior and posterior of the auricle is supplied by the great auricular nerve from the cervical plexus.
  • Some cutaneous branches of the auricular branch of the facial nerve also supplies skin on both sides of the auricle.
  • The trigeminal nerve is the general sensory nerve to the head, particularly the face, and is the motor nerve to the muscles of mastication.

The Ophthalmic Nerve

  • This is the superior division of the trigeminal nerve, the smallest of the three branches and is wholly sensory.
  • The ophthalmic nerve divides into three branches: the nasociliary, frontal and lacrimal just before entering the orbit through the superior orbital fissure.
  • The nasociliary nerve supplies the tip of the nose through the external nasal branch of the anterior ethmoidal nerve.
  • The frontal nerve is the direct continuation of CN V1 and divides into two branches, the supraorbital and supratrochlear.
  • The supratrochlear nerve supplies the middle part of the forehead.
  • The supraorbital nerve supplies the lateral part and the front of the scalp.
  • The lacrimal nerve, the smallest of the main ophthalmic branches, emerges over the superolateral orbital margin to supply the lacrimal gland and the lateral part of the upper eyelid.

The Maxillary Nerve

  • This is the intermediate division of the trigeminal nerve.
  • It has three cutaneous branches.
  • The infraorbital nerve is the largest terminal branch of the maxillary nerve.
  • It passes through the infraorbital foramen and breaks up into branches that supplies the skin on the lateral aspect of the nose, upper lip and lower eyelid.
  • The zygomaticofacial nerve, a small branch of the maxillary, emerges from the zygomatic bone from a foramen with the same name.
  • It supplies the skin over the zygomatic bone.
  • The zygomaticotemporal nerve emerges from the zygomatic bone from foramen of the same name.
  • It supplies the skin over the temporal region.

The Mandibular Nerve

  • This is the inferior division of the trigeminal nerve.
  • Of the three division of the trigeminal nerve, CN V3 is the only one that carries motor fibres (to the muscles of mastication).
  • The main sensory branches of the mandibular nerve are the buccal, auriculotemporal, inferior alveolar and lingual nerves.
  • The buccal nerve is a small branch of the mandibular that emerges from deep to the ramus of the mandible.
  • It supplies the skin of the cheek over the buccinator muscle, the mucous membrane lining the cheek, and the buccal surface of the gingiva.
  • The auriculotemporal nerve passes medially to the neck of the mandible and then turns superiorly, posterior to its head and anterior to the auricle. It then crosses over the root of the zygomatic process of the temporal bone, deep to the superficial temporal artery.
  • It supplies the auricle, external acoustic meatus, tympanic membrane, and the skin in the temporal region.
  • The inferior alveolar nerve is the large terminal branch of the posterior division of the mandibular nerve (the lingual nerve is the other terminal branch).
  • It enters the mandible through the mandibular foramen to the mandibular canal. In the canal, it gives branches to the mandibular teeth.
  • Opposite the mental foramen, this nerve divides into the mental nerve and the incisive nerve.
  • The incisive nerve supplies the incisor teeth, the adjacent gingiva and the mucosa of the lower lip.
  • The mental nerve emerges from the mental foramen and supplies the skin of the chin and the skin and mucous membrane of the lower lip and gingiva.
  • The lingual nerve is the smaller terminal branch of the mandibular nerve.
  • It supplies the general sensory fibres to the anterior two-thirds of the tongue, the floor of the mouth and the gingivae of the mandibular teeth.

  • Articulations

    Classified according to their structure, composition,and movability
    •    Fibrous joints-surfaces of bones almost in direct contact with limited movement
        o    Syndesmosis-two bones united by interosseous ligaments
        o    Sutures-serrated margins of bones united by a thin layer of fibrous tissue
        o    Gomphosis-insertion of a cone-shaped process into a socket

    •    Cartilaginous joints-no joint cavity and contiguous bones united by cartilage
        o    Synchondrosis-ends of two bones approximated by hyaline cartilage
        o    Symphyses-approximating bone surfaces connected by fibrocartilage

    •    Synovial joints-approximating bone surfaces covered with cartilage; may be separated by a disk; attached by ligaments 
        o    Hinge-permits motion in one plane only
        o    Pivot-permits rotary movement in which a ring rotates around a central axis
        o    Saddle-opposing surfaces are convexconcave. allowing great freedom of motion
        o    Ball and socket - capable of movement in an infinite number of axes; rounded head of one bone moves in a cuplike cavity of the approximating bone

    Bursae
    •    Sacs filled with synovial fluid that are present where tendons rub against bone or where skjn rubs across bone
    •    Some bursae communicate with a joint cavity 
    •    Prominent bursae found at the elbow. hip, and knee'

    Movements
    •    Gliding
        o    Simplest kind of motion in a joint
        o    Movement on a joint that does not involve any angular or rotary motions
    •    Flexion-decreases the angle formed by the union of two bones
    •    Extension-increases the angle formed by the union of two bones
    •    Abduction-occurs by moving part of the appendicular skeleton away from the median plane of the body
    •    Adduction-occurs by moving part of the appendicular skeleton toward the median plane of the body
    •    Circumduction
        o    Occurs in ball-and-socket joints
        o    Circumscribes the conic space of one bone by the other bone
    •    Rotation-turning on an axis without being displaced from that axis
     

The Palate

  • The palate forms the arched roof of the mouth and the floor of the nasal cavities.
  • The palate consists of two regions: the anterior 2/3 or bony part, called the hard palate, and the mobile posterior 1/3 or fibromuscular part, known as the soft palate.

 

The Hard Palate

  • The anterior bony part of the palate is formed by the palatine process of the maxillae and the horizontal plates of the palatine bones.
  • Anteriorly and laterally, the hard palate is bounded by the alveolar processes and the gingivae.
  • Posteriorly, the hard palate is continuous with the soft palate.
  • The incisive foramen is the mouth of the incisive canal.
  • This foramen is located posterior to the maxillary central incisor teeth.
  • This foramen is the common opening for the right and left incisive canals.
  • The incisive canal and foramen transmit the nasopalatine nerve and the terminal branches of the sphenopalatine artery.
  • Medial to the third molar tooth, the greater palatine foramen pierces the lateral border of the bony palate.
  • The greater palatine vessels and nerve emerge from this foramen and run anteriorly into two grooves on the palate.
  • The lesser palatine foramen transmits the lesser palatine nerve and vessels.
  • This runs to the soft palate and adjacent structures.

  • Bones begin to form during the eighth week of embryomic life in the fibrous membranes (intramembranous ossification) and hyaline cartilage (endochondral ossification)

Cardiac Muscle

Fibres anastomose through cross bridges

Fibres are short, connected end to end at intercalated discs, also striated,  contract automatically

Light microscopic Structure:

Short fibres connected at intercalated disks,  85 - 100 µm long,  15 µm

same bands as in skeletal muscle,  1 or 2 nuclei - oval and central,  in perinuclear area is a sarcoplasmic reticulum, intercalated discs lie at the Z line

Electron microscopic structure:

 Between myofibrils lie the mitochondria,  2,5 µm long mitochondria,  dense cristae

and are as long as the sarcomere, fibres have more glycogen than skeletal muscle fibres

myofilaments, actin and myosin are the same as in skeletal muscle,  the sarcoplasmic reticulum differs in that there is no terminal sisterna. The sarcotubules end in little feet that

sit on the T-tubule

Intercalated Disc:

on Z lines,  fibres interdigitate,

 3 types of junctions in the disc

Transverse Part:

zonula adherens

desmosomes

Lateral Part:

Gap junctions (nexus) - for impulse transfer

Mechanism of Contraction:

slide - ratchet like in skeletal muscle, certain fibres are modified for conduction,  Impulses spread from cell to cell through gap junctions,  Purkinje cells are found in the AV bundle

they have less myofibrils,  lots of glycogen and intercalated discs

Connective tissue coverings:

Only endomycium in cardiac muscle,  Blood vessels, lymph vessels and nerves lie in the endomycium

 

The Auditory Tube

  • This is a funnel-shaped tube connecting the nasopharynx to the tympanic cavity.
  • Its wide end is towards the nasopharynx, where it opens posterior to the inferior meatus of the nasal cavity.
  • The auditory tube is 3.5 to 4 cm long; its posterior 1/3 is bony and the other 2/3 is cartilaginous.
  • It bony part lies in a groove on the inferior aspect of the base of the skull, between the petrous part of the temporal bone and the greater wing of the sphenoid bone.
  • The function of the auditory tube is to equalise pressure of the middle ear with atmospheric pressure.

The Temporomandibular Joint

  • This articulation is a modified hinge type of synovial joint.
  • The articular surfaces are: (1) the head or condyle of the mandible inferiorly and (2) the articular tubercle and the mandibular fossa of the squamous part of the temporal bone.
  • An oval fibrocartilaginous articular disc divides the joint cavity into superior and inferior compartments. The disc is fused to the articular capsule surrounding the joint.
  • The articular disc is more firmly bound to the mandible than to the temporal bone.
  • Thus, when the head of the mandible slides anterior on the articular tubercle as the mouth is opened, the articular disc slides anteriorly against the posterior surface of the articular tubercle

Explore by Exams