Talk to us?

Anatomy - NEETMDS- courses
NEET MDS Lessons
Anatomy

Geniohyoid Muscle

  • Origin: Inferior genial tubercles of the mandible.
  • Insertion: Anterior surface of the body of the hyoid bone.
  • Nerve Supply: Branch of C1 through the hypoglossal nerve (CN XII).
  • Arterial Supply: Sublingual branch of the lingual artery.
  • Action: Elevates the hyoid bone and depresses the mandible.


-> Most of the facial skeleton is formed by nine bones: four paired (nasal, zygomatic, maxilla, and palatine) and one unpaired (mandible).
-> The calvaria of the new-born infant is large compared with the relatively small fascial skeleton.
-> This results from the small size of the jaws and the almost complete absence of the maxillary and other paranasal sinuses in the new-born skull.
-> These sinuses form large spaces in the adult facial skeleton. As the teeth and sinuses develop during infancy and childhood, the facial bones enlarge.
-> The growth of the maxillae between the ages of 6 and 12 years accounts for the vertical elongation of the child’s face.


The Nasal Bones 

-> These bones may be felt easily because they form the bridge of the nose.
-> The right and left nasal bones articulate with each other at the internasal suture.
-> They also articulate with the frontal bones, the maxillae, and the ethmoid bones.
-> The mobility of the anteroinferior portion of the nose, supported only by cartilages, serves as a partial protection against injure (e.g., a punch in the nose). However, a hard blow to the anterosuperior bony portion of the nose may fracture the nasal bones (broken nose).
-> Often the bones are displaced sideways and/or posteriorly.

The Maxillae 

-> The skeleton of the face between the mouth and the eyes is formed by the two maxillae.
-> They surround the anterior nasal apertures and are united in the medial plane at the intermaxillary suture to form the maxilla (upper jaw).
-> This suture is also visible in the hard palate, where the palatine processes of the maxillae unite.
-> Each adult maxilla consists of: a hollow body that contains a large maxillary sinus; a zygomatic process that articulates with its mate on the other side to form most of the hard palate; and alveolar processes that form sockets for the maxillary (upper) teeth.
-> The maxillae also articulate with the vomer, lacrimal, sphenoid, and palatine bones.
-> The body of the maxilla has a nasal surface that contributes to the lateral wall of the nasal cavity; an orbital surface that forms most of the floor of the orbit; an infratemporal surface that forms the anterior wall of the infratemporal fossa; and an anterior surface that faces partly anteriorly and partly anterolaterally and is covered buy facial muscles.
-> The relatively large infraorbital foramen, which faces inferomedially, is located about 1 cm inferior to the infraorbital margin; it transmits the infraorbital nerve and vessels.
-> The incisive fossa is a shallow concavity overlying the roots of the incisor teeth, just a shallow concavity overlying the roots of the incisor teeth, just inferior to the nasal cavity. This fossa is the injection site for anaesthesia of the maxillary incisor teeth.
-> If infected maxillary teeth are removed, the bone of the alveolar processes of the maxillae begins to be reabsorbed. As a result, the maxilla becomes smaller and the shape of the face changes.
-> Owing to absorption of the alveolar processes, there is a marked reduction in the height of the lower face, which produces deep creases in the facial skin that pass posteriorly from the corners of the mouth.


The Mandible 

-> This is a U-shaped bone and forms the skeleton of the lower jaw and the inferior part of the face. It is the largest and strongest facial bone.
-> The mandibular (lower) teeth project superiorly from their sockets in the alveolar processes.
-> The mandible (L. mandere, to masticate) consists of two parts: a horizontal part called the body, and two vertical oblong parts, called rami.
-> Each ramus ascends almost vertically from the posterior aspect of the body.
-> The superior part of the ramus has two processes: a posterior condylar process with a head or condyle and a neck, and a sharp anterior coronoid process.
-> The condylar process is separated from the coronoid process by the mandibular notch, which forms the concave superior border of the mandible.
-> Viewed from the superior aspect, the mandible is horseshoe-shaped, whereas each half is L-shaped when viewed laterally.
-> The rami and body meet posteriorly at the angle of the mandible.
-> Inferior to the second premolar tooth on each side of the mandible is a mental foramen (L. mentum, chin) for transmission of the mental vessels and the mental nerve.
-> In the anatomical position, the rami of the mandible are almost vertical, except in infants and in edentulous (toothless) adults.
-> On the internal aspect of the ramus, there is a large mandibular foramen.
-> It is the oblong entrance to the mandibular canal that transmits the inferior alveolar vessels and nerve to the roots of the mandibular teeth.
-> Branches of these vessels and the mental nerve emerge from the mandibular canal at the mental foramen.
-> Running inferiorly and slightly anteriorly on the internal surface of the mandible from the mandibular foramen is a small mylohyoid groove (sulcus), which indicates the course taken by the mylohyoid nerve and vessels.
-> These structures arise from the inferior alveolar nerve and vessels, just before they enter the mandibular foramen.
-> The internal surface of the mandible is divided into two areas by the mylohyoid line, which commences posterior to the third molar tooth. -> Just superior to the anterior end of the mylohyoid line are two small, sharp mental spines (genial tubercles), which serve as attachments for the genioglssus muscles.

The Zygomatic Bones 

-> The prominences of the cheeks (L. mala), the anterolateral rims and much of the infraorbital margins of the orbits, are formed by the zygomatic bones (malar bones, cheekbones).
-> They articulate with the frontal, maxilla, sphenoid, and temporal bones.
-> The frontal process of the zygomatic bone passes superiorly, where it forms the lateral border of the orbit (eye socket) and articulates with the frontal bone at the lateral edge of the supraorbital margin.
-> The zygomatic bones articulate medially with the greater wings of the sphenoid bone. The site of their articulation may be observed on the lateral wall of the orbit.
-> On the anterolateral aspect of the zygomatic bone near the infraorbital margin is a small zygomaticofacial foramen for the nerve and vessels of the same name.
-> The posterior surface of the zygomatic bone near the base of its frontal process is pierced by a small zygomaticotemporal foramen for the nerve of the same name.
-> The zygomaticofacial and zygomaticotemporal nerves, leaving the orbit through the previously named foramina, enter the zygomatic bone through small zygomaticoorbital foramina that pierces it orbital surface.
-> The temporal process of the zygomatic bone unites with the zygomatic process of the temporal bone to form the zygomatic arch.
-> This arch can be easily palpated on the side of the head, posterior to the zygomatic prominence (malar eminence) at the inferior boundary of the temporal fossa (temple).
-> The zygomatic arches form one of the useful landmarks for determining the location of the pterion. These arches are especially prominent in emaciated persons.
-> A horizontal plane passing medially from the zygomatic arch separates the temporal fossa superiorly from the infratemporal fossa inferiorly.

Other Bones

There are several other, very important bones in the skull, including the palatine bone, ethmoid bone, vomer, inferior concha and the ossicles of the ear (malleus, incus and stapes). These, however, are covered to greater detail where they are relevant in the head (e.g., ethmoid bone with the orbit and nasal cavity).

 

The Meatus of the Nose

Sphenopalatine Recess

  • This space is posterosuperior to the superior concha.
  • The sphenoidal sinus opens into this recess.

Superior Meatus

  • This is a narrow passageway between the superior and middle nasal conchae.
  • The posterior ethmoidal sinuses open into it by one or more orifices.

Middle Meatus

  • This is longer and wider than the superior one.
  • The anterosuperior part of this meatus lead into a funnel-shaped opening, called the infundibulum, through which the frontonasal duct leads to the frontal sinus.
  • There is one duct for each frontal sinus and since there may be several, there may be several frontonasal ducts.
  • When the middle concha is removed, rounded elevation called the ethmoidal bulla (L. bubble), is visible
  • The middle ethmoidal air cells open on the surface of the ethmoidal bulla.
  • Inferior to this bulla is a semicircular groove called the hiatus semilunaris.
  • The frontal sinus opens into this hiatus anterosuperiorly.
  • Near the hiatus are the openings of the anterior ethmoid air cells.
  • The maxillary sinus also opens into the middle meatus.

Inferior Meatus

  • This is a horizontal passage, inferolateral to the inferior nasal concha.
  • The nasolacrimal duct opens into the anterior part of this meatus.
  • Usually, the orifice of this duct is wide and circular.

Eye 

At week 4, two depressions are evident on each of the forebrain hemispheres.  As the anterior neural fold closes, the optic pits elongate to form the optic vesicles.  The optic vesicles remain connected to the forebrain by optic stalks. 
The invagination of the optic vesicles forms a bilayered optic cup.  The bilayered cup becomes the dual layered retina (neural and pigmented layer)
Surface ectoderm forms the lens placode, which invaginates with the optic cup.
The optic stalk is deficient ventrally to contain choroids fissure to allow blood vessels into the eye (hyaloid artery).  The artery feeds the growing lens, but will its distal portion will eventually degenerate such that the adult lens receives no hyaloid vasculature.
At the 7th week, the choroids fissure closes and walls fuse as the retinal nerve get bigger.
The anterior rim of the optic vesicles forms the retina and iris.  The iris is an outgrowth of the distal edge of the retina.
Optic vesicles induces/maintains the development of the lens vesicle, which forms the definitive lens.  Following separation of the lens vesicle from the surface ectoderm, the cornea develops in the anterior 1/5th of the eye.
The lens and retina are surrounded by mesenchyme which forms a tough connective tissue, the sclera, that is continuous with the dura mater around the optic nerve.  
Iridopupillary membrane forms to separate the anterior and posterior chambers of the eye.  The membrane breaks down to allow for the pupil
Mesenchyme surrounding the forming eye forms musculature (ciliary muscles and pupillary muscles – from somitomeres 1 and 2; innervated by CN III), supportive connective tissue elements and vasculature.


Eyelids

Formed by an outgrowth of ectoderm that is fused at its midline in the 2nd trimester, but later reopen.

Innervation of the Skin

  • Innervation of the skin is mainly through the three branches of the trigeminal nerve (CN V).
  • Some skin over the angle of the mandible and anterior and posterior of the auricle is supplied by the great auricular nerve from the cervical plexus.
  • Some cutaneous branches of the auricular branch of the facial nerve also supplies skin on both sides of the auricle.
  • The trigeminal nerve is the general sensory nerve to the head, particularly the face, and is the motor nerve to the muscles of mastication.

The Ophthalmic Nerve

  • This is the superior division of the trigeminal nerve, the smallest of the three branches and is wholly sensory.
  • The ophthalmic nerve divides into three branches: the nasociliary, frontal and lacrimal just before entering the orbit through the superior orbital fissure.
  • The nasociliary nerve supplies the tip of the nose through the external nasal branch of the anterior ethmoidal nerve.
  • The frontal nerve is the direct continuation of CN V1 and divides into two branches, the supraorbital and supratrochlear.
  • The supratrochlear nerve supplies the middle part of the forehead.
  • The supraorbital nerve supplies the lateral part and the front of the scalp.
  • The lacrimal nerve, the smallest of the main ophthalmic branches, emerges over the superolateral orbital margin to supply the lacrimal gland and the lateral part of the upper eyelid.

The Maxillary Nerve

  • This is the intermediate division of the trigeminal nerve.
  • It has three cutaneous branches.
  • The infraorbital nerve is the largest terminal branch of the maxillary nerve.
  • It passes through the infraorbital foramen and breaks up into branches that supplies the skin on the lateral aspect of the nose, upper lip and lower eyelid.
  • The zygomaticofacial nerve, a small branch of the maxillary, emerges from the zygomatic bone from a foramen with the same name.
  • It supplies the skin over the zygomatic bone.
  • The zygomaticotemporal nerve emerges from the zygomatic bone from foramen of the same name.
  • It supplies the skin over the temporal region.

The Mandibular Nerve

  • This is the inferior division of the trigeminal nerve.
  • Of the three division of the trigeminal nerve, CN V3 is the only one that carries motor fibres (to the muscles of mastication).
  • The main sensory branches of the mandibular nerve are the buccal, auriculotemporal, inferior alveolar and lingual nerves.
  • The buccal nerve is a small branch of the mandibular that emerges from deep to the ramus of the mandible.
  • It supplies the skin of the cheek over the buccinator muscle, the mucous membrane lining the cheek, and the buccal surface of the gingiva.
  • The auriculotemporal nerve passes medially to the neck of the mandible and then turns superiorly, posterior to its head and anterior to the auricle. It then crosses over the root of the zygomatic process of the temporal bone, deep to the superficial temporal artery.
  • It supplies the auricle, external acoustic meatus, tympanic membrane, and the skin in the temporal region.
  • The inferior alveolar nerve is the large terminal branch of the posterior division of the mandibular nerve (the lingual nerve is the other terminal branch).
  • It enters the mandible through the mandibular foramen to the mandibular canal. In the canal, it gives branches to the mandibular teeth.
  • Opposite the mental foramen, this nerve divides into the mental nerve and the incisive nerve.
  • The incisive nerve supplies the incisor teeth, the adjacent gingiva and the mucosa of the lower lip.
  • The mental nerve emerges from the mental foramen and supplies the skin of the chin and the skin and mucous membrane of the lower lip and gingiva.
  • The lingual nerve is the smaller terminal branch of the mandibular nerve.
  • It supplies the general sensory fibres to the anterior two-thirds of the tongue, the floor of the mouth and the gingivae of the mandibular teeth.

The Nose

  • The nose is the superior part of the respiratory tract and contains the peripheral organ of smell.
  • It is divided into right and left nasal cavities by the nasal septum.
  • The nasal cavity is divided into the olfactory area and the respiratory area.

Histology

Histology is the study of tissues.

A tissue is a group of cells with similar structure and function plus the extracellular substances located between the cells.

There are four basic types of tissues:

- Epitheliums

- Connective tissue

- Muscle tissue

- Nervous tissue

Explore by Exams