Talk to us?

Anatomy - NEETMDS- courses
NEET MDS Lessons
Anatomy

The External Ear

  • The auricle (L. auris, ear) is the visible, shell-like part of the external ear.
  • It consists of a single elastic cartilage that is covered on both surfaces with thin, hairy skin.
  • The external ear contains hairs, sweat glands, and sebaceous glands.
  • The cartilage is irregularly ridged and hollowed, which gives the auricle its shell-like form.
  • It also shapes the orifice of the external acoustic meatus.

 

The Ear Lobule

  • The ear lobule (earlobe) consists of fibrous tissue, fat and blood vessels that are covered with skin.
  • The arteries are derived mainly from the posterior auricular artery and the superficial temporal artery.
  • The skin of the auricle is supplied by the great auricular and auriculotemporal nerves.
  • The great auricular nerve supplies the superior surface and the lateral surface inferior to the external acoustic meatus with nerve fibres from C2.
  • The auriculotemporal nerve supplies the skin of the auricle superior to the external acoustic meatus.

The External Acoustic Meatus

  • This passage extends from the concha (L. shell) of the auricle to the tympanic membrane (L. tympanum, tambourine). It is about 2.5 cm long in adults.
  • The lateral 1/3 of the S-shaped canal is cartilaginous, whereas its medial 2/3 is bony.
  • The lateral third of the meatus is lined with the skin of the auricle and contains hair follicles, sebaceous glands, and ceruminous glands.
  • The latter glands produce cerumen (L. cera, wax).
  • The medial two-thirds of the meatus is lined with very thin skin that is continuous with the external layer of the tympanic membrane.
  • The lateral end of the meatus is the widest part. It has the diameter about that of a pencil.
  • The meatus becomes narrow at its medial end, about 4 mm from the tympanic membrane.
  • The constricted bony part is called the isthmus.
  • Innervation of the external acoustic meatus is derived from three cranial nerves:
  1. The auricular branch of the auriculotemporal nerve (derived from the mandibular, CN V3).
  2. The facial nerve (CN VII) by the branches from the tympanic plexus.
  3. The auricular branch of the vagus nerve (CN X).

The Tympanic Membrane

  • This is a thin, semi-transparent, oval membrane at the medial end of the external acoustic meatus.
  • It forms a partition between the external and middle ears.
  • The tympanic membrane is a thin fibrous membrane, that is covered with very thin skin externally and mucous membrane internally.
  • The tympanic membrane shows a concavity toward the meatus with a central depression, the umbo, which is formed by the end of the handle of the malleus.
  • From the umbo, a bright area referred to as the cone of light, radiates anteroinferiorly.
  • The external surface of the tympanic membrane is supplied by the auriculotemporal nerve.
  • Some innervation is supplied by a small auricular branch of the vagus nerve (CN X); this nerve may also contain some glossopharyngeal and facial nerve fibres.

The Lateral Pterygoid Muscle

  • This is a short, thick muscle that has two heads or origin.
  • It is a conical muscle with its apex pointing posteriorly.
  • Origin: superior head—infratemporal surface and infratemporal crest of the greater wing of the sphenoid bone, inferior head—lateral surface of lateral pterygoid plate.
  • Insertion: neck of mandible, articular disc, and capsule of temporomandibular joint.
  • Innervation: mandibular nerve via lateral pterygoid nerve from anterior trunk, which enters it deep surface.
  • Acting together, these muscles protrude the mandible and depress the chin.
  • Acting alone and alternately, they produce side-to-side movements of the mandible.

Cardiac Muscle

Fibres anastomose through cross bridges

Fibres are short, connected end to end at intercalated discs, also striated,  contract automatically

Light microscopic Structure:

Short fibres connected at intercalated disks,  85 - 100 µm long,  15 µm

same bands as in skeletal muscle,  1 or 2 nuclei - oval and central,  in perinuclear area is a sarcoplasmic reticulum, intercalated discs lie at the Z line

Electron microscopic structure:

 Between myofibrils lie the mitochondria,  2,5 µm long mitochondria,  dense cristae

and are as long as the sarcomere, fibres have more glycogen than skeletal muscle fibres

myofilaments, actin and myosin are the same as in skeletal muscle,  the sarcoplasmic reticulum differs in that there is no terminal sisterna. The sarcotubules end in little feet that

sit on the T-tubule

Intercalated Disc:

on Z lines,  fibres interdigitate,

 3 types of junctions in the disc

Transverse Part:

zonula adherens

desmosomes

Lateral Part:

Gap junctions (nexus) - for impulse transfer

Mechanism of Contraction:

slide - ratchet like in skeletal muscle, certain fibres are modified for conduction,  Impulses spread from cell to cell through gap junctions,  Purkinje cells are found in the AV bundle

they have less myofibrils,  lots of glycogen and intercalated discs

Connective tissue coverings:

Only endomycium in cardiac muscle,  Blood vessels, lymph vessels and nerves lie in the endomycium

 

Muscles Moving the Auditory Ossicles

The Tensor Tympani Muscle

  • This muscle is about 2 cm long.
  • Origin: superior surface of the cartilaginous part of the auditory tube, the greater wing of the sphenoid bone, and the petrous part of the temporal bone.
  • Insertion: handle of the malleus.
  • Innervation: mandibular nerve (CN V3) through the nerve to medial pterygoid.
  • The tensor tympani muscle pulls the handle of the malleus medially, tensing the tympanic membrane, and reducing the amplitude of its oscillations.
  • This tends to prevent damage to the internal ear when one is exposed to load sounds.

 

The Stapedius Muscle

  • This tiny muscle is in the pyramidal eminence or the pyramid.
  • Origin: pyramidal eminence on the posterior wall of the tympanic cavity. Its tendon enters the tympanic cavity by traversing a pinpoint foramen in the apex of the pyramid.
  • Insertion: neck of the stapes.
  • Innervation: nerve to the stapedius muscle, which arises from the facial nerve (CN VII).
  • The stapedius muscle pulls the stapes posteriorly and tilts its base in the fenestra vestibuli or oval window, thereby tightening the anular ligament and reducing the oscillatory range.
  • It also prevents excessive movement of the stapes.

The Meatus of the Nose

Sphenopalatine Recess

  • This space is posterosuperior to the superior concha.
  • The sphenoidal sinus opens into this recess.

Superior Meatus

  • This is a narrow passageway between the superior and middle nasal conchae.
  • The posterior ethmoidal sinuses open into it by one or more orifices.

Middle Meatus

  • This is longer and wider than the superior one.
  • The anterosuperior part of this meatus lead into a funnel-shaped opening, called the infundibulum, through which the frontonasal duct leads to the frontal sinus.
  • There is one duct for each frontal sinus and since there may be several, there may be several frontonasal ducts.
  • When the middle concha is removed, rounded elevation called the ethmoidal bulla (L. bubble), is visible
  • The middle ethmoidal air cells open on the surface of the ethmoidal bulla.
  • Inferior to this bulla is a semicircular groove called the hiatus semilunaris.
  • The frontal sinus opens into this hiatus anterosuperiorly.
  • Near the hiatus are the openings of the anterior ethmoid air cells.
  • The maxillary sinus also opens into the middle meatus.

Inferior Meatus

  • This is a horizontal passage, inferolateral to the inferior nasal concha.
  • The nasolacrimal duct opens into the anterior part of this meatus.
  • Usually, the orifice of this duct is wide and circular.

Nerves of the Palate

  • The sensory nerves of the palate, which are branches of the pterygopalatine ganglion, are the greater and lesser palatine nerves.
  • They accompany the arteries through the greater and lesser palatine foramina, respectively.
  • The greater palatine nerve supplies the gingivae, mucous membrane, and glands of the hard palate.
  • The lesser palatine nerve supplies the soft palate.
  • Another branch of the pterygopalatine ganglion, the nasopalatine nerve, emerges from the incisive foramen and supplies the mucous membrane of the anterior part of the hard palate.

 

Vessels of the Palate

  • The palate has a rich blood supply from branches of the maxillary artery.

->The two parietal bones (L. paries, wall) form large parts of the walls of the calvaria.
->On the outside of these smooth convex bones, there are slight elevations near the centre called parietal eminences.
->The middle of the lateral surfaces of the parietal bones is crossed by two curved lines, the superior and inferior temporal lines.
->The superior temporal line indicates an attachment of the temporal fascia; the inferior temporal line marks the superior limit of the temporalis muscle.
->The parietal bones articulate with each other in the median plane at the sagittal suture. The medial plane of the body passes through the sagittal suture.
->The inverted V-shaped suture between the parietal bones and the occipital bones is called the lambdoid suture because of its resemblance to the letter lambda in the Greek alphabet.
->The point where the parietal and occipital bones join is a useful reference point called the lambda. It can be felt as a depression in some people.
->In addition to articulation with each other and the frontal and occipital bones, the parietal bones articulate with the temporal bones and the greater wings of the sphenoid bone.
->In foetal and infant skulls, the bones of the calvaria are separated by dense connective tissue membranes at sutures.
->The large fibrous area where several sutures meet are called fonticuli or fontanelles.
->The softness of these bones and looseness of their connections at these sutures enable the calvaria to undergo changes of shape during birth called molding. Within a day or so after birth, the shape of the infant’s calvaria returns to normal.
->The loose construction of the new-born calvaria also allows the skull to enlarge and undergo remodelling during infancy and childhood.

->Relationships between the various bones are constantly changing during the active growth period.
->The increase in the size of the cranium is greatest during the first 2 years, the period of most rapid postnatal growth of the brain.
->The cranium normally increases in capacity until about 15 or 16 years of age; thereafter the cranium usually increases only slightly in size as its bones thicken for 3 to 4 years.

 

Explore by Exams