Talk to us?

Anatomy - NEETMDS- courses
NEET MDS Lessons
Anatomy

The Nasopharynx

  • The nasal part of the pharynx has a respiratory function.
  • It lies superior to the soft palate and is a posterior extension of the nasal cavity.
  • The nose opens into the nasopharynx via to large posterior apertures called choanae.
  • The roof and posterior wall of the nasopharynx form a continuous surface that lies inferior to the body of the sphenoid bone and the basilar part of the occipital bone.
  • In the mucous membrane of the roof of the posterior wall of the nasopharynx is a collection of lymphoid tissue, known as the pharyngeal tonsil (commonly known as the adenoids).
  • The pharyngeal orifice of the auditory tube is on the lateral wall of the nasopharynx, 1 to 1.5 cm posterior to the inferior concha, and level with the superior border of the palate.
  • The orifice is directed inferiorly and has a hood-like tubal elevation over it called the torus of the auditory tube or the torus tubarius (L. torus, swelling).
  • Extending inferiorly from the torus is a vertical fold of mucous membrane, known as the salpingopharyngeal fold.
  • The collection of lymphoid tissue in the submucosa of the pharynx, posterior to the orifice of the auditory tube, is known as the tubal tonsil.
  • Posterior to the torus and the salpingopharyngeal fold, there is a slit-like lateral projection of the pharynx called the pharyngeal recess.
  • It extends laterally and posteriorly.

The Eye and Orbit

  • The orbit (eye socket) appears as a bony recess in the skull when it is viewed from anteriorly.
  • It almost surrounds the eye and their associated muscles, nerves and vessels, together with the lacrimal apparatus.
  • The orbit is shaped somewhat like a four-side pyramid lying on its side, with its apex pointing posteriorly and its base anteriorly.

 

Muscles Around the Nose

The Nasalis Muscle

  • This muscle consists of a transverse (compressor naris) and alar (dilator naris) parts.
  • It is supplied by the buccal branch of the facial nerve.

Endochondral ossification

  • A cartilage model exists
  • Through intramembraneous ossification in the perichondrium a collar of bone forms around the middle part of the cartilage model
  • The perichondrium change to a periostium
  • The bone collar cuts off the nutrient and oxygen supply to the chondrocytes in the cartilage model
  • The chondrocytes then increase in size and resorb the surrounding cartilage matrix until only thin vertical septae of matrix are left over
  • These thin plates then calcify after which the chondrocytes die
  • The osteoclasts make holes in the bone collar through which blood vessels can now enter the cavities left behind by the chondrocytes
  • With the blood vessels osteoprogenitor cells enter the tissue
  • They position themselves on the calcified cartilage septae, change into osteoblasts and start to deposit bone to form trabeculae
  • In the mean time the periosteum is depositing bone on the outside of the bone collar making it thicker and thicker
  • The trabeculae,consisting of a core of calcified cartilage with bone deposited on top of it, are eventually resorbed by osteoclasts to form the marrow cavity
  • The area where this happens is the primary ossification centre and lies in what is called the diaphysis (shaft)
  • This process spreads in two directions towards the two ends of the bone the epiphysis
  • In the two ends (heads) of the bone a similar process takes place
  • A secondary ossification centre develops from where ossification spreads radially
  • Here no bone collar forms
  • The outer layer of the original cartilage remains behind to form the articulating cartilage
  • Between the primary and the secondary ossification centers two epiphyseal cartilage plates remain
  • This is where the bone grows in length
  • From the epiphyseal cartilage plate towards the diaphysis a number of zones can be identified:

 Resting zone of cartilage

 Hyaline cartilage

 Proliferation zone

 Chondrocytes divide to form columns of cells that mature.

Hypertrophic cartilage zone

 Chondrocytes become larger, accumulate glycogen, resorb the surrounding matrix so that only thin septae of cartilage remain 

Calcification and degeneration zone

The thin septae of cartilage become calcified.

The calsified septae cut off the nutrient supply to the chondrocytes so subsequently they die.

Ossification zone.

Osteoclasts make openings in the bone collar through which blood vessels then invade the spaces left vacant by the chondrocytes that died.

Osteoprogenitor cells come in with the blood and position themselves on the calcified cartilage

septae, change into osteoblasts and start to deposit bone.

 When osteoblasts become trapped in bone they change to osteocytes.

Growth and remodeling of bone

Long bones become longer because of growth at the epiphyseal plates

They become wider because of bone formed by the periosteum

The marrow cavity becomes bigger because of resorbtion by the osteoclasts

Fracture repair

When bone is fractured a blood clot forms

 Macrophages then remove the clot, remaining osteocytes and damaged bone matrix

The periosteum and endosteum produce osteoprogenitor cells that form a cellular tissue in the fracture area

 Intramembranous and endochondral ossification then take place in this area forming trabeculae.

Trabeculae connect the two ends of the broken bone to form a callus

Remodelling then takes place to restore the bone as it was

Joints

The capsule of a joint seals off the articular cavity,  

The capsule has two layers

 fibrous (outer)

synovial (inner)

The synovial layer is lined by squamous or cuboidal epithelial cells,  Under this layer is a layer of loose or dense CT, The lining cells consists of two types:

- A cells

- B cells

They secrete the synovial fluid

They are different stages of the same cell, They are also phagocytic., The articular cartilage has fibres that run perpendicular to the bone and then turn to run parallel to the surface

 

Structure of the Nasal Septum

  • This part bony, part cartilaginous septum divides the chamber of the nose into two narrow nasal cavities.
  • The bony part of the septum is usually located in the median plane until age 7; thereafter, it often deviates to one side, usually the right.
  • The nasal septum has three main components: (1) the perpendicular plate of the ethmoid bone; (2) the vomer, and (3) the septal cartilage.
  • The perpendicular plate, which forms the superior part of the septum, is very thin and descends from the cribiform plate of the ethmoid bone.
  • The vomer, which forms the posteroinferior part of the septum, is a thin, flat bone. It articulates with the sphenoid, maxilla and palatine bones.

->The sides and base of the skull are formed partly by these bones.
->Each bone consists of four morphologically distinct parts that fuse during development (squamous, petromastoid, and tympanic parts and the styloid process).
->The flat squamous part is external to the lateral surface of the temporal lobe of the brain.
->The petromastoid part encloses the internal ear and mastoid cells and forms part of the base of the skull.
->The tympanic part contains the bony passage from the auricle (external ear), called the external acoustic meatus. The petromastoid part also forms a portion of the bony wall of the tympanic cavity (middle ear). The meatus and tympanic cavity are concerned with the transmission of sound waves.
->The slender, pointed styloid process of the temporal bone gives attachment to certain ligaments and muscles (e.g., the stylohyoid muscle that elevates the hyoid bone).
->The temporal bone articulates at sutures with the parietal, occipital, sphenoid, and zygomatic bones.
->The zygomatic process of the temporal bone unites with the temporal process of the zygomatic bone to form the zygomatic arch. The zygomatic arches form the widest part of the face.
->The head of the mandible articulates with the mandibular fossa on the inferior surface of the zygomatic process of the temporal bone.
->Anterior to the mandibular fossa is the articular tubercle.
->Because the zygomatic arches are the widest parts of the face and are such prominent facial features, they are commonly fractured and depressed. A fracture of the temporal process of the zygomatic bone would likely involve the lateral wall of the orbit and could injure the eye.

 


-> Most of the facial skeleton is formed by nine bones: four paired (nasal, zygomatic, maxilla, and palatine) and one unpaired (mandible).
-> The calvaria of the new-born infant is large compared with the relatively small fascial skeleton.
-> This results from the small size of the jaws and the almost complete absence of the maxillary and other paranasal sinuses in the new-born skull.
-> These sinuses form large spaces in the adult facial skeleton. As the teeth and sinuses develop during infancy and childhood, the facial bones enlarge.
-> The growth of the maxillae between the ages of 6 and 12 years accounts for the vertical elongation of the child’s face.


The Nasal Bones 

-> These bones may be felt easily because they form the bridge of the nose.
-> The right and left nasal bones articulate with each other at the internasal suture.
-> They also articulate with the frontal bones, the maxillae, and the ethmoid bones.
-> The mobility of the anteroinferior portion of the nose, supported only by cartilages, serves as a partial protection against injure (e.g., a punch in the nose). However, a hard blow to the anterosuperior bony portion of the nose may fracture the nasal bones (broken nose).
-> Often the bones are displaced sideways and/or posteriorly.

The Maxillae 

-> The skeleton of the face between the mouth and the eyes is formed by the two maxillae.
-> They surround the anterior nasal apertures and are united in the medial plane at the intermaxillary suture to form the maxilla (upper jaw).
-> This suture is also visible in the hard palate, where the palatine processes of the maxillae unite.
-> Each adult maxilla consists of: a hollow body that contains a large maxillary sinus; a zygomatic process that articulates with its mate on the other side to form most of the hard palate; and alveolar processes that form sockets for the maxillary (upper) teeth.
-> The maxillae also articulate with the vomer, lacrimal, sphenoid, and palatine bones.
-> The body of the maxilla has a nasal surface that contributes to the lateral wall of the nasal cavity; an orbital surface that forms most of the floor of the orbit; an infratemporal surface that forms the anterior wall of the infratemporal fossa; and an anterior surface that faces partly anteriorly and partly anterolaterally and is covered buy facial muscles.
-> The relatively large infraorbital foramen, which faces inferomedially, is located about 1 cm inferior to the infraorbital margin; it transmits the infraorbital nerve and vessels.
-> The incisive fossa is a shallow concavity overlying the roots of the incisor teeth, just a shallow concavity overlying the roots of the incisor teeth, just inferior to the nasal cavity. This fossa is the injection site for anaesthesia of the maxillary incisor teeth.
-> If infected maxillary teeth are removed, the bone of the alveolar processes of the maxillae begins to be reabsorbed. As a result, the maxilla becomes smaller and the shape of the face changes.
-> Owing to absorption of the alveolar processes, there is a marked reduction in the height of the lower face, which produces deep creases in the facial skin that pass posteriorly from the corners of the mouth.


The Mandible 

-> This is a U-shaped bone and forms the skeleton of the lower jaw and the inferior part of the face. It is the largest and strongest facial bone.
-> The mandibular (lower) teeth project superiorly from their sockets in the alveolar processes.
-> The mandible (L. mandere, to masticate) consists of two parts: a horizontal part called the body, and two vertical oblong parts, called rami.
-> Each ramus ascends almost vertically from the posterior aspect of the body.
-> The superior part of the ramus has two processes: a posterior condylar process with a head or condyle and a neck, and a sharp anterior coronoid process.
-> The condylar process is separated from the coronoid process by the mandibular notch, which forms the concave superior border of the mandible.
-> Viewed from the superior aspect, the mandible is horseshoe-shaped, whereas each half is L-shaped when viewed laterally.
-> The rami and body meet posteriorly at the angle of the mandible.
-> Inferior to the second premolar tooth on each side of the mandible is a mental foramen (L. mentum, chin) for transmission of the mental vessels and the mental nerve.
-> In the anatomical position, the rami of the mandible are almost vertical, except in infants and in edentulous (toothless) adults.
-> On the internal aspect of the ramus, there is a large mandibular foramen.
-> It is the oblong entrance to the mandibular canal that transmits the inferior alveolar vessels and nerve to the roots of the mandibular teeth.
-> Branches of these vessels and the mental nerve emerge from the mandibular canal at the mental foramen.
-> Running inferiorly and slightly anteriorly on the internal surface of the mandible from the mandibular foramen is a small mylohyoid groove (sulcus), which indicates the course taken by the mylohyoid nerve and vessels.
-> These structures arise from the inferior alveolar nerve and vessels, just before they enter the mandibular foramen.
-> The internal surface of the mandible is divided into two areas by the mylohyoid line, which commences posterior to the third molar tooth. -> Just superior to the anterior end of the mylohyoid line are two small, sharp mental spines (genial tubercles), which serve as attachments for the genioglssus muscles.

The Zygomatic Bones 

-> The prominences of the cheeks (L. mala), the anterolateral rims and much of the infraorbital margins of the orbits, are formed by the zygomatic bones (malar bones, cheekbones).
-> They articulate with the frontal, maxilla, sphenoid, and temporal bones.
-> The frontal process of the zygomatic bone passes superiorly, where it forms the lateral border of the orbit (eye socket) and articulates with the frontal bone at the lateral edge of the supraorbital margin.
-> The zygomatic bones articulate medially with the greater wings of the sphenoid bone. The site of their articulation may be observed on the lateral wall of the orbit.
-> On the anterolateral aspect of the zygomatic bone near the infraorbital margin is a small zygomaticofacial foramen for the nerve and vessels of the same name.
-> The posterior surface of the zygomatic bone near the base of its frontal process is pierced by a small zygomaticotemporal foramen for the nerve of the same name.
-> The zygomaticofacial and zygomaticotemporal nerves, leaving the orbit through the previously named foramina, enter the zygomatic bone through small zygomaticoorbital foramina that pierces it orbital surface.
-> The temporal process of the zygomatic bone unites with the zygomatic process of the temporal bone to form the zygomatic arch.
-> This arch can be easily palpated on the side of the head, posterior to the zygomatic prominence (malar eminence) at the inferior boundary of the temporal fossa (temple).
-> The zygomatic arches form one of the useful landmarks for determining the location of the pterion. These arches are especially prominent in emaciated persons.
-> A horizontal plane passing medially from the zygomatic arch separates the temporal fossa superiorly from the infratemporal fossa inferiorly.

Other Bones

There are several other, very important bones in the skull, including the palatine bone, ethmoid bone, vomer, inferior concha and the ossicles of the ear (malleus, incus and stapes). These, however, are covered to greater detail where they are relevant in the head (e.g., ethmoid bone with the orbit and nasal cavity).

 

Explore by Exams