NEET MDS Lessons
Anatomy
Nerves of the Palate
- The sensory nerves of the palate, which are branches of the pterygopalatine ganglion, are the greater and lesser palatine nerves.
- They accompany the arteries through the greater and lesser palatine foramina, respectively.
- The greater palatine nerve supplies the gingivae, mucous membrane, and glands of the hard palate.
- The lesser palatine nerve supplies the soft palate.
- Another branch of the pterygopalatine ganglion, the nasopalatine nerve, emerges from the incisive foramen and supplies the mucous membrane of the anterior part of the hard palate.
Vessels of the Palate
- The palate has a rich blood supply from branches of the maxillary artery.
Skeletal Muscle: 1-40 cm long fibres, 10- 60 µm thick, according to myoglobin content there are:
Red fibres: lots of myoglobin, many mitochondriam slow twitching - tire slowly
White fibres: less myoglobin, less mitochondria, fast twitching - tire quickly
Intermediate fibres:
mixture of 2 above
Most muscles have all three - in varying ratios
Structure of skeletal muscle:
Light Microscopy: Many nuclei - 35/mm, Nuclei are oval - situated peripheral, Dark and light bands
Electron Microscopy: Two types of myofilaments
Actin
- 5,6 nm
3 components:
-actin monomers,
-tropomyosin - 7 actin molecules long
- troponin
actin monomers form 2 threats that spiral
- tropomyosin - lie in the groove of the spiral
- troponin - attach every 40 nm
- one end attach to the Z line
- other end goes to the middle of the sarcomere
- Z line consists of á actinin
Myosin:
- 15 nm
- 1,6 µm long
- The molecule has a head and a tail
- tails are parallel
- heads project in a spiral
- in the middle is a thickening
- thin threats bind the myosin at thickening (M line)
Contraction:
A - band stays the same, I - band, H - bands become narrower
Myosin heads ratchet on the actin molecule
Sarcolemma: 9 nm thick, invaginate to form T-tubule,
myofibrils - attach to the sarcolemma
Sarcoplasmic Reticulum:
specialized smooth EPR, Consists of T-tubules, terminal sisternae and sarcotubules
It is speculated that there are gap junctions between the T-tubule and terminal sisterna
An impulse is carried into the fiber by the T-tubule from where it goes to the rest of the sarcoplasmic reticulum
Connective tissue coverings of the muscle
Endomycium around fibres, perimycium around bundles and epimycium around the whole muscle
Blood vessels and nerves in CT
CT goes over into tendon or aponeurosis which attaches to the periosteum
Nerves:
The axon of a motor neuron branches and ends in motor end plates on the fiber
Specialized striated fibres called spindles (stretch receptors) form sensory receptors in muscles telling the brain how far the muscle has stretched
Muscles of the larynx
Extrinsic muscles
suprahyoid: raise larynx, depress mandible for swallowing
infrahyoid: lower larynx for swallowing
both stabilize hyoid for tongue movements
The Salivary Glands
- There are three large, paired salivary glands: the parotid, submandibular, and sublingual glands.
- In addition to the main salivary glands, there are numerous small accessory salivary glands scattered over the palate, lips, cheeks, tonsils, and tongue.
The Cheeks
- The cheeks (L. buccae) form the lateral wall of the vestibule of the oral cavity.
- They have essentially the same structure as the lips with which they are continuous.
- The principal muscular component of the cheeks is the buccinator muscle.
- Superficial to the fascia covering this muscle is the buccal fatpad that gives cheeks their rounded contour, especially in infants.
- The lips and cheeks act as a functional unit (e.g. during sucking, blowing, eating, etc.).
- They act as an oral sphincter in pushing food from the vestibule to the oral cavity proper.
- The tongue and buccinator muscle keep the food between the molar teeth during chewing.
Sensory Nerves of the Cheeks
- These are branches of the maxillary and mandibular nerves.
- They supply the skin of the cheeks and the mucous membrane lining the cheeks.
Initially, four clefts exist; however, only one gives rise to a definite structure in adults.
1st pharyngeal cleft |
Penetrates underlying mesenchyme and forms EAM. The bottom of EAM forms lateral aspect of tympanic cavity. |
2nd pharyngeal cleft |
Undergoes active proliferation and overlaps remaining clefts. It merges with ectoderm of lower neck such that the remaining clefts lose contact with outside. Temporarily, the clefts form an ectodermally lined cavity, the cervical sinus, but this disappears during development. |
Muscles Around the Mouth
- The sphincter of the mouth is orbicularis oris and the dilator muscles radiate outward from the lips like the spokes of a wheel.
Orbicularis Oris Muscle
- This muscle encircles the mouth and is the sphincter of the oral aperture
- This muscle (1) closes the lips, (2) protrudes them and (3) compresses them against the teeth.
- It plays an important role in articulation and mastication. Together with the buccinator muscle, it helps to hold the food between the teeth during mastication.
Zygomaticus Major Muscle
- It extends from the zygomatic bone to the angle of the mouth.
- It draws the corner of the moth superolaterally during smiling and laughing.
Zygomaticus Minor Muscle
- This is a narrow slip of muscle, and passes obliquely from the zygomatic bone to the orbicularis oris.
- It helps raise the upper lip when showing contempt or to deepen the nasolabial sulcus when showing sadness.
The Buccinator Muscle
- This is a thin, flat, rectangular muscle.
- It is attached laterally to the alveolar processes of the maxilla and mandible, opposite the molar teeth and the pterygomandibular raphe.
- Medially, its fibres mingle with those of orbicularis oris.Innervation: the buccal branch of facial.
- It aids mastication and swallowing by pushing the cheeks against the molar teeth during chewing.