Talk to us?

Anatomy - NEETMDS- courses
NEET MDS Lessons
Anatomy

-> This is a wedge-shaped bone (G. sphen, wedge) is located anteriorly to the temporal bones.
-> It is a key bone in the cranium because it articulates with eight bones (frontal, parietal, temporal, occipital, vomer, zygomatic, palatine, and ethmoid).
-> It main parts are the body and the greater and lesser wings, which spread laterally from the body.
-> The superior surface of its body is shaped like a Turkish saddle (L. sella, a saddle); hence its name sella turcica.
-> It forms the hypophyseal fossa which contains the hypophysis cerebri or pituitary gland.
-> The sella turcica is bounded posteriorly by the dorsum sellae, a square plate of bone that projects superiorly and has a posterior clinoid process on each side.
-> Inside the body of the sphenoid bone, there are right and left sphenoid sinuses. The floor of the sella turcica forms the roof of these paranasal sinuses.
-> Studies of the sella turcica and hypophyseal fossa in radiographs or by other imaging techniques are important because they may reflect pathological changes such as a pituitary tumour or an aneurysm of the internal carotid artery. Decalcification of the dorsum sellae is one of the signs of a generalised increase in intracranial pressure.

 

The Tongue

  • The tongue (L. lingua; G. glossa) is a highly mobile muscular organ that can vary greatly in shape.
  • It consists of three parts, a root, body, and tip.
  • The tongue is concerned with mastication, taste, deglutition (swallowing), articulation (speech), and oral cleansing.
  • Its main functions are squeezing food into the pharynx when swallowing, and forming words during speech.

 

Gross Features of the Tongue

  • The dorsum of the tongue is divided by a V-shaped sulcus terminalis into anterior oral (presulcal) and posterior pharyngeal (postsulcal) parts.
  • The apex of the V is posterior and the two limbs diverge anteriorly.
  • The oral part forms about 2/3 of the tongue and the pharyngeal part forms about 1/3.

 

Oral Part of the Tongue

  • This part is freely movable, but it is loosely attached to the floor of the mouth by the lingual frenulum.
  • On each side of the frenulum is a deep lingual vein, visible as a blue line.
  • It begins at the tip of the tongue and runs posteriorly.
  • All the veins on one side of the tongue unite at the posterior border of the hyoglossus muscle to form the lingual vein, which joins the facial vein or the internal jugular vein.
  • On the dorsum of the oral part of the tongue is a median groove.
  • This groove represents the site of fusion of the distal tongue buds during embryonic development.

 

The Lingual Papillae and Taste Buds

  • The filiform papillae (L. filum, thread) are numerous, rough, and thread-like.
  • They are arranged in rows parallel to the sulcus terminalis.
  • The fungiform papillae are small and mushroom-shaped.
  • They usually appear are pink or red spots.
  • The vallate (circumvallate) papillae are surrounded by a deep, circular trench (trough), the walls of which are studded with taste buds.
  • The foliate papillae are small lateral folds of lingual mucosa that are poorly formed in humans.
  • The vallate, foliate and most of the fungiform papillae contain taste receptors, which are located in the taste buds.

 

The Pharyngeal Part of the Tongue

  • This part lies posterior to the sulcus terminalis and palatoglossal arches.
  • Its mucous membrane has no papillae.
  • The underlying nodules of lymphoid tissue give this part of the tongue a cobblestone appearance.
  • The lymphoid nodules (lingual follicles) are collectively known as the lingual tonsil.

The Ear

  • The ear contains the vestibulocochlear organ and consists of three main parts: external, middle, and internal.
  • It has two functions, balance and hearing.
  • The tympanic membrane (eardrum) separates the external ear from the middle ear.
  • The auditory tube joins the middle ear or tympanic cavity to the nasopharynx.

Tongue 
Appears at 4th week.
Musculature derived from mesoderm of occipital somites.  Precursor muscles cells migrate to region of tongue and are innervated by general sensory efferent fibers of CN XII.
Mucosa derived from anterior endoderm lining arches 1-4; accordingly, innervation depends on arch derivation:
              Mucosa of anterior 2/3 of tongue comes from the first arch -> CN V
              Mucosa of posterior 1/3 of tongue comes from third and forth arch -> CN IX, X
Special taste of anterior 2/3 of tongue comes from CN VII.
Special taste of posterior 1/3 of tongue comes from CN X.
Tongue freed from floor of mouth by extensive degeneration of underlying tissue.  Midline frenulum continues to anchor tongue to floor of mouth.

Thyroid Gland

Develops as in growth of mucosal epithelium located in the midline of the tongue (at foramen cecum).  It descends along front of pharyngeal gut, but remains connected to tongue by thyrooglossal duct, which is obliterated later in development.  Thyroid gland descends to a point just caudal to laryngeal cartilages. 

Facial structures (general)

a) medial nasal prominence forms midline of nose, philtrum and primary palate
b) lateral nasal prominence forms alae of nose
c) maxillary prominence forms cheek region and lateral lip
d) clefts can form at inter-prominence fusion lines

Nose

At the time of anterior neural tube closure, mesenchyme around forebrain, frontonasal prominence (FNP), has smooth rounded extended contour.  Nasal placodes (thickening of surface ectoderm to become peripheral neural tissue) develop on frontolateral aspects of FNP.  Mesenchyme swells around nasal placode producing a medial and lateral nasal prominence (nasomedial and nasolateral processes).  These nasal prominences form the nose.

Mouth 

Stomadeum (primitive oral cavity) forms between frontonasal prominence and first pharyngeal arch.  The first pharyngeal arch forms the dorsal maxillary prominence and ventral mandibular prominence.  The maxillary prominence will merge with medial nasal prominences, pushing them closer to cause fusion.  Fused medial nasal prominences will form midline of nose and midline of upper lip (philtrum) and primary palate (first 4 teeth).

Nasolacrimal structures

Maxillary and lateral nasal prominences are separated by deep furrow, the nasolacrimal groove.  Ectoderm in floor of groove forms epithelial cord, which detaches from overlying ectoderm.  The epithelial cord canalizes to form the nasolacrimal duct.  The upper end of the duct widens to form the lacrimal sac.  After detachment of the cord, the maxillary and lateral nasal prominences merge with each other, resulting in the formation of a nasolacrimal duct that runs from the medial corner of the eye to the inferior meatus of the nasal cavity.  
The maxillary prominences enlarge to form the cheeks and maxillae.
The lateral nasal prominences form the alae of the nose.

Secondary (hard) palate

Main part of definitive palate formed by two palatine shelves derived from intraoral bilateral extensions of the maxillary prominences.  These appear at the 6th week.  They are directed obliquely downward on each side of the tongue; they move down when mandible gets bigger.  
At the seventh week, they ascend to attain a horizontal position, then fuse to form the secondary palate.  At the time the palatine shelves fuse, the nasal septum (an outgrowth of median tissue of the frontonasal prominence) grows down and joins the cephalic aspect of the newly formed palate
Anteriorly, shelves fuse with triangular primary palate.  The incisive foramen marks the midline between the primary and secondary palate.

External Ear

The auricle is derived from 6 auricular hillocks (mesenchymal proliferations) along the dorsal aspect of arches 1 (top of ear) and 2 (bottom of ear).  These fuse to form the definitive auricle.  At the mandible grows, the ear is pushed upward and backward from its initial horizontal position on the neck.
The EAM is derived from the 1st pharyngeal arch.  
The eardrum (tympanic membrane) is composed of 3 layers of cells: 1) ectodermal epithelial lining of bottom of EAM; 2) endodermal epithelium lining of tympanic cavity; 3) intermediate layer of connective tissue.
The eardrum is composed of multiple cell layers because it represents the first pharyngeal membrane, and thus lies at the junction of the first pharyngeal pouch and cleft.

Middle Ear

The middle ear consists of an auditory tube (from the 1st pharyngeal pouch, along with tympanic cavity) and the ossicles (from pharyngeal arches 1 and 2 cartilage).  
The first arch cartilage forms the malleus and incus.  The tensor tympani (muscle of the malleus) is derived from the fourth somitomere (associated with the first arch) and is therefore innervated by CN V.
The second arch cartilage forms the stapes.  The stapedius (muscles of the stapes) is derived from the sixth somitomere (associated with the second arch) and is therefore innervated by CN VII.
The ossicles are initially embedded in mesenchyme, but in the 8th month, the mesenchyme degenerates and an endodermal epithelial lining of the tympanic cavity envelops the ossicles and connects them to the wall of the cavity in a mesentery-like fashion.


Inner Ear

The inner ear is derived thickening of surface ectoderm on both sides of the hindbrain (otic placodes).  The placodes invaginate to form otic vesicles (otocytes).  The vesicles then divide into ventral and dorsal components.
The ventral component forms the saccule and cochlear duct.
The dorsal component forms the utricle and semicircular canals and endolymphatic duct.


Cochlear Duct

Derived from an outgrowth of the saccule during the 6th week.  The outgrowth penetrates the surrounding mesenchyme in a spiral fashion.  The surrounding mesenchyme forms the cartilage and undergoes vacuolization.
The scala vestibule and scale tympani form and surround the cochlear duct.  They are filled with periplymp to receive mechanical vibrations of ossicles. The mechanical stimuli activates sensory (ciliary) cells in the cochlear duct.  

Semicircular canals

The utricle is initially three flattened outpocketings, which lose the central core.  From this three semicircular canals are forms, each at 90 degree angles from one another.  Sensory cells arise in the ampulla at one end of each canal, in the utricle and saccule. 

Walls of the Tympanic Cavity or Middle Ear

  • This cavity is shaped like a narrow six-sided box that has convex medial and lateral walls.
  • It has the shape of the biconcave lens in cross-section (like a red blood cell).

 

The Roof or Tegmental Wall

  • This is formed by a thin plate of bone, called the tegmen tympani (L. tegmen, roof).
  • It separates the tympanic cavity from the dura on the floor of middle cranial fossa.
  • The tegmen tympani also covers the aditus ad antrum.

 

The Floor or Jugular Wall

  • This wall is thicker than the roof.
  • It separates the tympanic cavity from the superior bulb of the internal jugular vein. The internal jugular vein and the internal carotid artery diverge at the floor of the tympanic cavity.
  • The tympanic nerve, a branch of the glossopharyngeal nerve (CN IX), passes through an aperture in the floor of the tympanic cavity and its branches form the tympanic plexus.

The Lateral or Membranous Wall

  • This is formed almost entirely by the tympanic membrane.
  • Superiorly it is formed by the lateral bony wall of the epitympanic recess.
  • The handle of the malleus is incorporated in the tympanic membrane, and its head extends into the epitympanic recess.

The Medial or Labyrinthine Wall

  • This separates the middle ear from the membranous labyrinth (semicircular ducts and cochlear duct) encased in the bony labyrinth.
  • The medial wall of the tympanic cavity exhibits several important features.
  • Centrally, opposite the tympanic membrane, there is a rounded promontory (L. eminence) formed by the first turn of the cochlea.
  • The tympanic plexus of nerves, lying on the promontory, is formed by fibres of the facial and glossopharyngeal nerves.
  • The medial wall of the tympanic cavity also has two small apertures or windows.
  • The fenestra vestibuli (oval window) is closed by the base of the stapes, which is bound to its margins by an annular ligament.
  • Through this window, vibrations of the stapes are transmitted to the perilymph window within the bony labyrinth of the inner ear.
  • The fenestra cochleae (round window) is inferior to the fenestra vestibuli.
  • This is closed by a second tympanic membrane.

 

The Posterior or Mastoid Wall

  • This wall has several openings in it.
  • In its superior part is the aditus ad antrum (mastoid antrum), which leads posteriorly from the epitympanic recess to the mastoid cells.
  • Inferiorly is a pinpoint aperture on the apex of a tiny, hollow projection of bone, called the pyramidal eminence (pyramid).
  • This eminence contains the stapedius muscle.
  • Its aperture transmits the tendon of the stapedius, which enters the tympanic cavity and inserts into the stapes.
  • Lateral to the pyramid, there is an aperture through which the chorda tympani nerve, a branch of the facial nerve (CN VII), enters the tympanic cavity.

The Anterior Wall or Carotid Wall

  • This wall is a narrow as the medial and lateral walls converge anteriorly.
  • There are two openings in the anterior wall.
  • The superior opening communicates with a canal occupied by the tensor tympani muscle.
  • Its tendon inserts into the handle of the malleus and keeps the tympanic membrane tense.
  • Inferiorly, the tympanic cavity communicates with the nasopharynx through the auditory tube.

The Paranasal Sinuses

  • These sinuses are air-filled extensions of the respiratory part of the nasal cavity.
  • They are in the following bones, frontal, ethmoid, sphenoid and the maxilla.

The Frontal Sinuses

  • These are located between the outer and inner tables of the frontal bone, posterior to the superciliary arches.

The Ethmoidal Sinuses

  • These comprise of several small cavities, called ethmoidal air cells, within the ethmoidal labyrinth (G. labyrinthos, a maze) of the lateral mass of the ethmoid bone.

The Sphenoidal Sinuses

  • These occupy a variable amount in the body of the sphenoid bone and may extend into the wings.

The Maxillary Sinuses

  • These are the largest pair of paranasal sinuses.
  • They are pyramidal-shaped cavities that may occupy the entire bodies of the maxillae.

The Nasopharynx

  • The nasal part of the pharynx has a respiratory function.
  • It lies superior to the soft palate and is a posterior extension of the nasal cavity.
  • The nose opens into the nasopharynx via to large posterior apertures called choanae.
  • The roof and posterior wall of the nasopharynx form a continuous surface that lies inferior to the body of the sphenoid bone and the basilar part of the occipital bone.
  • In the mucous membrane of the roof of the posterior wall of the nasopharynx is a collection of lymphoid tissue, known as the pharyngeal tonsil (commonly known as the adenoids).
  • The pharyngeal orifice of the auditory tube is on the lateral wall of the nasopharynx, 1 to 1.5 cm posterior to the inferior concha, and level with the superior border of the palate.
  • The orifice is directed inferiorly and has a hood-like tubal elevation over it called the torus of the auditory tube or the torus tubarius (L. torus, swelling).
  • Extending inferiorly from the torus is a vertical fold of mucous membrane, known as the salpingopharyngeal fold.
  • The collection of lymphoid tissue in the submucosa of the pharynx, posterior to the orifice of the auditory tube, is known as the tubal tonsil.
  • Posterior to the torus and the salpingopharyngeal fold, there is a slit-like lateral projection of the pharynx called the pharyngeal recess.
  • It extends laterally and posteriorly.

Explore by Exams