NEET MDS Lessons
Anatomy
Internal Ear
- Osseous labyrinth: a complex system of cavities in the substance of the petrous bone.
- Membranous labyrinth: filled with endolymph, bathed in perilymph.
The Parotid Glands
- The parotid glands are the largest of the three pairs of salivary glands.
- Each gland is wedged between the mandible and the sternocleidomastoid muscle and partly covers them.
- The parotid gland is wrapped with a fibrous capsule (parotid fascia) that is continuous with the deep investing fascia of the neck.
- Viewed superficially, the parotid gland is somewhat triangular in shape.
- Its apex is posterior to the angle of the mandible and its base is along the zygomatic arch.
- The parotid gland overlaps the posterior part of the masseter muscle.
- The parotid duct (Stensen's duct) is about 5 cm long and 5 mm in diameter.
- It passes horizontally from the anterior edge of the gland.
- At the anterior border of the masseter muscle, the parotid duct turns medially and pierces the buccinator muscle.
- It enters the oral cavity opposite the second maxillary molar.
Blood Vessels of the Parotid Gland
- This gland is supplied by branches of the external carotid artery.
- The veins from the parotid gland drains into the retromandibular vein, which enters the internal jugular vein.
Lymphatic Drainage of the Parotid Gland
- The lymph vessels of this gland end in the superficial and deep cervical lymph nodes.
Nerves of the Parotid Gland
- These nerves are derived from the auriculotemporal nerve and from the sympathetic and parasympathetic systems.
- The parasympathetic fibres are derived from the glossopharyngeal nerve (CN IX) through the otic ganglion.
- Stimulation of these fibres produces a thin watery (serous) saliva to flow from the parotid duct.
- The sympathetic fibres are derived from the cervical ganglia through the external carotid plexus.
- Stimulation of these fibres produces a thick mucous saliva.
Tongue
Appears at 4th week.
Musculature derived from mesoderm of occipital somites. Precursor muscles cells migrate to region of tongue and are innervated by general sensory efferent fibers of CN XII.
Mucosa derived from anterior endoderm lining arches 1-4; accordingly, innervation depends on arch derivation:
Mucosa of anterior 2/3 of tongue comes from the first arch -> CN V
Mucosa of posterior 1/3 of tongue comes from third and forth arch -> CN IX, X
Special taste of anterior 2/3 of tongue comes from CN VII.
Special taste of posterior 1/3 of tongue comes from CN X.
Tongue freed from floor of mouth by extensive degeneration of underlying tissue. Midline frenulum continues to anchor tongue to floor of mouth.
Thyroid Gland
Develops as in growth of mucosal epithelium located in the midline of the tongue (at foramen cecum). It descends along front of pharyngeal gut, but remains connected to tongue by thyrooglossal duct, which is obliterated later in development. Thyroid gland descends to a point just caudal to laryngeal cartilages.
Facial structures (general)
a) medial nasal prominence forms midline of nose, philtrum and primary palate
b) lateral nasal prominence forms alae of nose
c) maxillary prominence forms cheek region and lateral lip
d) clefts can form at inter-prominence fusion lines
Nose
At the time of anterior neural tube closure, mesenchyme around forebrain, frontonasal prominence (FNP), has smooth rounded extended contour. Nasal placodes (thickening of surface ectoderm to become peripheral neural tissue) develop on frontolateral aspects of FNP. Mesenchyme swells around nasal placode producing a medial and lateral nasal prominence (nasomedial and nasolateral processes). These nasal prominences form the nose.
Mouth
Stomadeum (primitive oral cavity) forms between frontonasal prominence and first pharyngeal arch. The first pharyngeal arch forms the dorsal maxillary prominence and ventral mandibular prominence. The maxillary prominence will merge with medial nasal prominences, pushing them closer to cause fusion. Fused medial nasal prominences will form midline of nose and midline of upper lip (philtrum) and primary palate (first 4 teeth).
Nasolacrimal structures
Maxillary and lateral nasal prominences are separated by deep furrow, the nasolacrimal groove. Ectoderm in floor of groove forms epithelial cord, which detaches from overlying ectoderm. The epithelial cord canalizes to form the nasolacrimal duct. The upper end of the duct widens to form the lacrimal sac. After detachment of the cord, the maxillary and lateral nasal prominences merge with each other, resulting in the formation of a nasolacrimal duct that runs from the medial corner of the eye to the inferior meatus of the nasal cavity.
The maxillary prominences enlarge to form the cheeks and maxillae.
The lateral nasal prominences form the alae of the nose.
Secondary (hard) palate
Main part of definitive palate formed by two palatine shelves derived from intraoral bilateral extensions of the maxillary prominences. These appear at the 6th week. They are directed obliquely downward on each side of the tongue; they move down when mandible gets bigger.
At the seventh week, they ascend to attain a horizontal position, then fuse to form the secondary palate. At the time the palatine shelves fuse, the nasal septum (an outgrowth of median tissue of the frontonasal prominence) grows down and joins the cephalic aspect of the newly formed palate
Anteriorly, shelves fuse with triangular primary palate. The incisive foramen marks the midline between the primary and secondary palate.
External Ear
The auricle is derived from 6 auricular hillocks (mesenchymal proliferations) along the dorsal aspect of arches 1 (top of ear) and 2 (bottom of ear). These fuse to form the definitive auricle. At the mandible grows, the ear is pushed upward and backward from its initial horizontal position on the neck.
The EAM is derived from the 1st pharyngeal arch.
The eardrum (tympanic membrane) is composed of 3 layers of cells: 1) ectodermal epithelial lining of bottom of EAM; 2) endodermal epithelium lining of tympanic cavity; 3) intermediate layer of connective tissue.
The eardrum is composed of multiple cell layers because it represents the first pharyngeal membrane, and thus lies at the junction of the first pharyngeal pouch and cleft.
Middle Ear
The middle ear consists of an auditory tube (from the 1st pharyngeal pouch, along with tympanic cavity) and the ossicles (from pharyngeal arches 1 and 2 cartilage).
The first arch cartilage forms the malleus and incus. The tensor tympani (muscle of the malleus) is derived from the fourth somitomere (associated with the first arch) and is therefore innervated by CN V.
The second arch cartilage forms the stapes. The stapedius (muscles of the stapes) is derived from the sixth somitomere (associated with the second arch) and is therefore innervated by CN VII.
The ossicles are initially embedded in mesenchyme, but in the 8th month, the mesenchyme degenerates and an endodermal epithelial lining of the tympanic cavity envelops the ossicles and connects them to the wall of the cavity in a mesentery-like fashion.
Inner Ear
The inner ear is derived thickening of surface ectoderm on both sides of the hindbrain (otic placodes). The placodes invaginate to form otic vesicles (otocytes). The vesicles then divide into ventral and dorsal components.
The ventral component forms the saccule and cochlear duct.
The dorsal component forms the utricle and semicircular canals and endolymphatic duct.
Cochlear Duct
Derived from an outgrowth of the saccule during the 6th week. The outgrowth penetrates the surrounding mesenchyme in a spiral fashion. The surrounding mesenchyme forms the cartilage and undergoes vacuolization.
The scala vestibule and scale tympani form and surround the cochlear duct. They are filled with periplymp to receive mechanical vibrations of ossicles. The mechanical stimuli activates sensory (ciliary) cells in the cochlear duct.
Semicircular canals
The utricle is initially three flattened outpocketings, which lose the central core. From this three semicircular canals are forms, each at 90 degree angles from one another. Sensory cells arise in the ampulla at one end of each canal, in the utricle and saccule.
EPITHELIUMS
Epithelial Tissue Epithelial tissue covers surfaces, usually has a basement membrane, has little extracellular material, and has no blood vessels. A basement membrane attaches the epithelial cells to underlying tissues. Most epithelia have a free surface, which is not in contact with other cells. Epithelia are classified according to the number of cell layers and the shape of the cells.
- Epitheliums contain no blood vessels. There is normally an underlying layer of connective tissue
- Almost all epitheliums lie on a basement membrane.The basement membrane consists of a basal lamina and reticular lamina. The reticular lamina is connected to the basal lamina by anchoring fibrils. The reticular lamina may be absent in which case the basement membrane consist only of a basal lamina. The basal lamina consists of a - lamina densa in the middle (physical barrier) with a lamina lucida on both sides (+charge barrier),The basement membrane is absent in ependymal cells.The basement membrane is not continuous in sinusoidal capillaries.
- Epitheliums always line or cover something
- Epithelial cells lie close together with little intercellular space
- Epithelial cells are strongly connected to one another especially those epitheliums that are subjected to mechanical forces.
Functions of Epithelium:
→ Simple epithelium involved with diffusion, filtration, secretion, or absorption
→ Stratified epithelium protects from abrasion
→ Squamous cells function in diffusion or filtration
Superior Constrictor Muscle
- Origin: Hamulus, pterygo-mandibular raphe, and mylohyoid line of the mandible.
- Insertion: Median raphe of the pharynx.
- Nerve Supply: Vagus nerve via the pharyngeal plexus.
- Arterial Supply: Ascending pharyngeal artery, ascending palatine artery, tonsillar branch of the facial artery, and dorsal branch of the lingual artery.
- Action: Constricts the wall of the pharynx during swallowing.
-> Most of the facial skeleton is formed by nine bones: four paired (nasal, zygomatic, maxilla, and palatine) and one unpaired (mandible).
-> The calvaria of the new-born infant is large compared with the relatively small fascial skeleton.
-> This results from the small size of the jaws and the almost complete absence of the maxillary and other paranasal sinuses in the new-born skull.
-> These sinuses form large spaces in the adult facial skeleton. As the teeth and sinuses develop during infancy and childhood, the facial bones enlarge.
-> The growth of the maxillae between the ages of 6 and 12 years accounts for the vertical elongation of the child’s face.
The Nasal Bones
-> These bones may be felt easily because they form the bridge of the nose.
-> The right and left nasal bones articulate with each other at the internasal suture.
-> They also articulate with the frontal bones, the maxillae, and the ethmoid bones.
-> The mobility of the anteroinferior portion of the nose, supported only by cartilages, serves as a partial protection against injure (e.g., a punch in the nose). However, a hard blow to the anterosuperior bony portion of the nose may fracture the nasal bones (broken nose).
-> Often the bones are displaced sideways and/or posteriorly.
The Maxillae
-> The skeleton of the face between the mouth and the eyes is formed by the two maxillae.
-> They surround the anterior nasal apertures and are united in the medial plane at the intermaxillary suture to form the maxilla (upper jaw).
-> This suture is also visible in the hard palate, where the palatine processes of the maxillae unite.
-> Each adult maxilla consists of: a hollow body that contains a large maxillary sinus; a zygomatic process that articulates with its mate on the other side to form most of the hard palate; and alveolar processes that form sockets for the maxillary (upper) teeth.
-> The maxillae also articulate with the vomer, lacrimal, sphenoid, and palatine bones.
-> The body of the maxilla has a nasal surface that contributes to the lateral wall of the nasal cavity; an orbital surface that forms most of the floor of the orbit; an infratemporal surface that forms the anterior wall of the infratemporal fossa; and an anterior surface that faces partly anteriorly and partly anterolaterally and is covered buy facial muscles.
-> The relatively large infraorbital foramen, which faces inferomedially, is located about 1 cm inferior to the infraorbital margin; it transmits the infraorbital nerve and vessels.
-> The incisive fossa is a shallow concavity overlying the roots of the incisor teeth, just a shallow concavity overlying the roots of the incisor teeth, just inferior to the nasal cavity. This fossa is the injection site for anaesthesia of the maxillary incisor teeth.
-> If infected maxillary teeth are removed, the bone of the alveolar processes of the maxillae begins to be reabsorbed. As a result, the maxilla becomes smaller and the shape of the face changes.
-> Owing to absorption of the alveolar processes, there is a marked reduction in the height of the lower face, which produces deep creases in the facial skin that pass posteriorly from the corners of the mouth.
The Mandible
-> This is a U-shaped bone and forms the skeleton of the lower jaw and the inferior part of the face. It is the largest and strongest facial bone.
-> The mandibular (lower) teeth project superiorly from their sockets in the alveolar processes.
-> The mandible (L. mandere, to masticate) consists of two parts: a horizontal part called the body, and two vertical oblong parts, called rami.
-> Each ramus ascends almost vertically from the posterior aspect of the body.
-> The superior part of the ramus has two processes: a posterior condylar process with a head or condyle and a neck, and a sharp anterior coronoid process.
-> The condylar process is separated from the coronoid process by the mandibular notch, which forms the concave superior border of the mandible.
-> Viewed from the superior aspect, the mandible is horseshoe-shaped, whereas each half is L-shaped when viewed laterally.
-> The rami and body meet posteriorly at the angle of the mandible.
-> Inferior to the second premolar tooth on each side of the mandible is a mental foramen (L. mentum, chin) for transmission of the mental vessels and the mental nerve.
-> In the anatomical position, the rami of the mandible are almost vertical, except in infants and in edentulous (toothless) adults.
-> On the internal aspect of the ramus, there is a large mandibular foramen.
-> It is the oblong entrance to the mandibular canal that transmits the inferior alveolar vessels and nerve to the roots of the mandibular teeth.
-> Branches of these vessels and the mental nerve emerge from the mandibular canal at the mental foramen.
-> Running inferiorly and slightly anteriorly on the internal surface of the mandible from the mandibular foramen is a small mylohyoid groove (sulcus), which indicates the course taken by the mylohyoid nerve and vessels.
-> These structures arise from the inferior alveolar nerve and vessels, just before they enter the mandibular foramen.
-> The internal surface of the mandible is divided into two areas by the mylohyoid line, which commences posterior to the third molar tooth. -> Just superior to the anterior end of the mylohyoid line are two small, sharp mental spines (genial tubercles), which serve as attachments for the genioglssus muscles.
The Zygomatic Bones
-> The prominences of the cheeks (L. mala), the anterolateral rims and much of the infraorbital margins of the orbits, are formed by the zygomatic bones (malar bones, cheekbones).
-> They articulate with the frontal, maxilla, sphenoid, and temporal bones.
-> The frontal process of the zygomatic bone passes superiorly, where it forms the lateral border of the orbit (eye socket) and articulates with the frontal bone at the lateral edge of the supraorbital margin.
-> The zygomatic bones articulate medially with the greater wings of the sphenoid bone. The site of their articulation may be observed on the lateral wall of the orbit.
-> On the anterolateral aspect of the zygomatic bone near the infraorbital margin is a small zygomaticofacial foramen for the nerve and vessels of the same name.
-> The posterior surface of the zygomatic bone near the base of its frontal process is pierced by a small zygomaticotemporal foramen for the nerve of the same name.
-> The zygomaticofacial and zygomaticotemporal nerves, leaving the orbit through the previously named foramina, enter the zygomatic bone through small zygomaticoorbital foramina that pierces it orbital surface.
-> The temporal process of the zygomatic bone unites with the zygomatic process of the temporal bone to form the zygomatic arch.
-> This arch can be easily palpated on the side of the head, posterior to the zygomatic prominence (malar eminence) at the inferior boundary of the temporal fossa (temple).
-> The zygomatic arches form one of the useful landmarks for determining the location of the pterion. These arches are especially prominent in emaciated persons.
-> A horizontal plane passing medially from the zygomatic arch separates the temporal fossa superiorly from the infratemporal fossa inferiorly.
Other Bones
There are several other, very important bones in the skull, including the palatine bone, ethmoid bone, vomer, inferior concha and the ossicles of the ear (malleus, incus and stapes). These, however, are covered to greater detail where they are relevant in the head (e.g., ethmoid bone with the orbit and nasal cavity).
Sternum
o Forms the medial part of the anterior chest wall
o Manubrium (upper part)-clavicle and first rib articulate with the manubrium .
o Body (middle blade)-second and tenth ribs articulate with the body via the costal cartilages
o Xiphoid (blunt cartilaginous tip)
Ribs (12 pairs)
o Each rib articulates with both the body and the transverse process of its corresponding
o thoracic vertebra
o The second to ninth ribs articulate with the body of the vertebra above'
o Ribs curve outward, forward, and then downward
o Anteriorly, each of the first seven ribs joins a costal cartilage that attaches to the sternum
o Next three ribs (eighth to tenth) join the cartilage of the rib above
o Eleventh and twelfth ribs do not attach to the sternum; are called "floating ribs"