NEET MDS Lessons
Anatomy
Innervation of the Skin
- Innervation of the skin is mainly through the three branches of the trigeminal nerve (CN V).
- Some skin over the angle of the mandible and anterior and posterior of the auricle is supplied by the great auricular nerve from the cervical plexus.
- Some cutaneous branches of the auricular branch of the facial nerve also supplies skin on both sides of the auricle.
- The trigeminal nerve is the general sensory nerve to the head, particularly the face, and is the motor nerve to the muscles of mastication.
The Ophthalmic Nerve
- This is the superior division of the trigeminal nerve, the smallest of the three branches and is wholly sensory.
- The ophthalmic nerve divides into three branches: the nasociliary, frontal and lacrimal just before entering the orbit through the superior orbital fissure.
- The nasociliary nerve supplies the tip of the nose through the external nasal branch of the anterior ethmoidal nerve.
- The frontal nerve is the direct continuation of CN V1 and divides into two branches, the supraorbital and supratrochlear.
- The supratrochlear nerve supplies the middle part of the forehead.
- The supraorbital nerve supplies the lateral part and the front of the scalp.
- The lacrimal nerve, the smallest of the main ophthalmic branches, emerges over the superolateral orbital margin to supply the lacrimal gland and the lateral part of the upper eyelid.
The Maxillary Nerve
- This is the intermediate division of the trigeminal nerve.
- It has three cutaneous branches.
- The infraorbital nerve is the largest terminal branch of the maxillary nerve.
- It passes through the infraorbital foramen and breaks up into branches that supplies the skin on the lateral aspect of the nose, upper lip and lower eyelid.
- The zygomaticofacial nerve, a small branch of the maxillary, emerges from the zygomatic bone from a foramen with the same name.
- It supplies the skin over the zygomatic bone.
- The zygomaticotemporal nerve emerges from the zygomatic bone from foramen of the same name.
- It supplies the skin over the temporal region.
The Mandibular Nerve
- This is the inferior division of the trigeminal nerve.
- Of the three division of the trigeminal nerve, CN V3 is the only one that carries motor fibres (to the muscles of mastication).
- The main sensory branches of the mandibular nerve are the buccal, auriculotemporal, inferior alveolar and lingual nerves.
- The buccal nerve is a small branch of the mandibular that emerges from deep to the ramus of the mandible.
- It supplies the skin of the cheek over the buccinator muscle, the mucous membrane lining the cheek, and the buccal surface of the gingiva.
- The auriculotemporal nerve passes medially to the neck of the mandible and then turns superiorly, posterior to its head and anterior to the auricle. It then crosses over the root of the zygomatic process of the temporal bone, deep to the superficial temporal artery.
- It supplies the auricle, external acoustic meatus, tympanic membrane, and the skin in the temporal region.
- The inferior alveolar nerve is the large terminal branch of the posterior division of the mandibular nerve (the lingual nerve is the other terminal branch).
- It enters the mandible through the mandibular foramen to the mandibular canal. In the canal, it gives branches to the mandibular teeth.
- Opposite the mental foramen, this nerve divides into the mental nerve and the incisive nerve.
- The incisive nerve supplies the incisor teeth, the adjacent gingiva and the mucosa of the lower lip.
- The mental nerve emerges from the mental foramen and supplies the skin of the chin and the skin and mucous membrane of the lower lip and gingiva.
- The lingual nerve is the smaller terminal branch of the mandibular nerve.
- It supplies the general sensory fibres to the anterior two-thirds of the tongue, the floor of the mouth and the gingivae of the mandibular teeth.
Skull bones
- 26 bones: 22 bones + hyoid (small bone in neck for swallowing) + 3 auditory ossicles (middle ear: incus, malleus, stapes)
- 21 bones: tightly connected; mandible is freely mobile at temperomandibular joint (synovial)
- connective-tissue interface b/w bones = suture
- bones – mandible = cranium
- cranium
- neurocranium: covers brain anteriorly, laterally and posteriorly
- brain supported by bones of basicranium
- also contributes to interorbital region; b/w eyes and superior to nasal passages
- viscerocranium/splanchnocranium: bones of face
- sutures
- coronal: separates frontal from parietals
- sagittal: separates two parietal bones
- lambdoidal: separates parietal form occipital
- squamosal: b/w temporal and parietal; overlapping sutures
- At birth: 2 frontal bones which eventually fuse; metopic suture disappears

Cranial Cavities: 5 major cavities
Endocranial, left and right orbits, nasal cavities, oral cavity, middle ear cavities
Endocranial cavity
- contains brain, meninges, cerebrospinal fluid, brain’s vascular supply and most proximal portion of cranial nerves
- enclosed by neurocranium and basicranium
- basicranium: foramina for neurovascular bundles
- foramen magnum: spinal cord exit
- floor of endocranial cavity divide into fossae
- anterior: frontal lobes of brain
- middle: pair temporal lobes
- posterior: cerebellum and brainstem
LYMPHOID SYSTEM
Consists of cells, tissues and organs
Protects the body against damage by foreign substances
Immuno competent cells in the lymphoid system distinguish between the bodies own molecules and foreign molecules.
The response is immunity.
lymphoid tissues have a: - reticular framework (collagen III) consisting of: reticular cells , (indistinguishable from fibroblasts) , lymphocytes, macrophages, antigen presenting cells, plasma cells
Each organ has special features:
Capsulated – spleen, lymph nodes, thymus
Unencapsulated – tonsils, Peyers patches. lymphoid nodules in: - alimentary canal
- Nodules in: respiratory tract, urinary tract, reproductive tracts
2 Types of immunity:
- Cellular: Macrophages - destroy foreign cells
- Humeral – immunoglobulins and antibodies (glycoproteins) interact with foreign substances
- cellular and humeral immune system require accessory cells like: macrophages, antigen presenting cells
Thymus
Lymphocytes develop from mesenchym. The lymphocytes then invade an epithelial premordium .The epithelial cells are pushed apart by lymphocytes. Epithelial cells remain connected through desmosomes to form the epithelial reticular cells. Septae from the capsule divide the thymus up into incomplete lobules (0,5-2 mm ). Each lobule has a cortex which is packed with lymphocytes. In the middle of the lobule is the lighter staining medulla. The cortex and medulla are continuous. Hassall's corpuscles, consisting of flat epithelial cells, lie in the medulla .The corpuscles increase in size and number through life
Thymus cells:
- Cortex and medulla have the same cells – only their proportions differ
- The predominant cell is the T lymphocytes and precursors
- There are also epithelial reticular cells with large oval nuclei. The cells are joined by desmosomes.
- A few mesenchymal reticular cells are also present.
- There are many macrophages.
Cortex:
- Only capillaries (no other vessels)
- small lymphocytes predominate
- here they do not form nodules
- epithelial cells surround groups of lymphocytes and blood vessels
- around the capillary is a space
- forms blood thymus barrier
- Layers of the blood thymus barrier:
- capillary wall endothelium
basal lamina
little CT with macrophages
- epithelial reticular cells - basal lamina
- cytoplasm of epithelial reticular cells
Medulla:
- Stains light because of many epithelial reticular cells
- 5% of thymic lymphocytes found in medulla
- mature lymphocytes - smaller than that of cortex
- leave through venules to populate organs such as the spleen and lymph nodes
- In the medulla the covering of capillaries by epithelial reticular cells is incomplete - no barrier
- Hassall's corpuscles
- 30 - 150µm .
- consists of layers of epithelial reticular cells
- the central part of the corpuscle may only be cell remnants
- unknown function
Lymph nodes
- Encapsulated
- found throughout the body
- form filters in the lymph tracts
- lymph penetrate through afferent lymph vessels on the convex surface
- exit through efferent lymph vessels of the hilum
- capsule send trabeculae into the node to divide it up into incomplete compartments
- reticular tissue provide the super structure
- under the capsule is a cortex – the cortex is absent at the hilum
- At the centre of the node and at the hilum is a medulla
- The cortex has a subcapsular sinus and peritrabecular sinuses
The sinuses:-
- Incompletely lined by reticular cells
- Have numerous macrophages
- fibres cross the sinuses
- they slow the flow of lymph down -
- so that the macrophages can get a chance to perform their function.
Primary and secondary lymphoid nodules
- Some lymphocytes in the cortex form spherical aggregations 0,2-1 mm Ø called primary nodules (or follicles)
- They contain mainly B lymphocytes but some T- lymphocytes are also present
- A germinal centre may develop in the middle of the nodule when an antigen is present. The nodule then becomes a secondary nodule, which is:
- light staining in the centre because:
- many B lymphocytes increase in size to become plasmablasts
- plasmablasts undergo mitosis to become plasmacytes
- plasmacytes migrate to the follicular periphery and then to the medullary cords where they mature
into plasma cells that secrete antibodies into the efferent lymph.
- lymphocytes that don’t differentiate into plasma cells remain small lymphocytes and are called memory
cells – which migrate to different parts of the body
- memory cells are capable of mounting a rapid humoral response on subsequent contact with the same antigen.
- In the nodules there are also follicular dendritic cells which are:
- non phagocytic
- with cytoplasmic extensions
- trap antigens on their surface
- present it to B and T lymphocytes which then respond
Paracortical Zone
- Between adjacent nodules and between the nodules and the medulla are loosely arranged lymphocytes which form the paracortical area or deep cortical area.
- The main cell type in this area is the T lymphocyte.
- They enter the lymph node with the blood and migrate into the paracortical zone.
- T lymphocytes are stimulated when presented with an antigen by the follicular dendritic cells.
- They transform into large lymphobasts which undergo mitosis to produce activated T lymphocytes.
- These activated T lymphocytes must go to the area of antigen stimulation to perform its function.
- When this happens the paracortex expand greatly.
- Later they join the efferent lymph to leave the lymph node.
- These lymphocytes disappear when the thymus is removed - especially if done at birth
The medulla
- Consists of medulla with branching cords separated by medullary sinusses.
- Througout the medulla are trabeculae.
- The cords contain numerous B lymphocytes and plasma cells.
- A few macrophages and T lymphocytes may also be present.
- Receive and circulate lymph from the cortical sinuses.
- Medullary sinuses communicate with efferent lymph vessels.
Spleen
- Largest lymphatic organ
- Many phagocytic cells
- Filters blood
- Form activated lymphocytes which go into the blood
- Form antibodies
General structures:
- Dense CT capsule with a few smooth muscle fibres encapsulate the spleen
- The capsule is thickened at the hilum.
- Trabeculae from the hilum carry blood vessels and nerves in and out of the spleen.
- The capsule divide the spleen into incomplete compartments.
- The spleen has no lymph vessels because it is a blood filter and not a lymph filter like the lymph nodes.
Splenic pulp
- The lymph nodules are called the white pulp
- The white pulp lies in dark red tissue called red pulp
- Red pulp is composed of splenic cords (Billroth cords) which lie between sinusoids
- Reticular tissue forms the superstructure for the spleen and contains:
- reticular cells
- macrophages
Blood circulation
- The splenic artery divide as it enters the hilum
- The arteries in the trabeculae are called trabecular arteries
- The trabecular arteries give of braches into the white pulp (central arteries).
- The artery may not lie in center but is still called a central artery.
- The central arteries give off branches to the white pulp which go through the white pulp to end in the marginal sinuses on the perimeter of the white pulp.
- The central artery continues into the red pulp (called the pulp artery) where it branches into straight arteries called penicilli.
- The penicilli continue as arterial capillaries some of which are sheated by macrophages.
- The blood from the arterial capillaries flow into the red pulp sinuses that lie between the red pulp cords.
- The way the blood gets from the capillaries into the sinuses is uncertain. It can either:
- Flow directly into the sinuses - closed theory
- Or flow through the spaces between the red pulp cord cells and then enter the sinusoid - open theory.
- Presently the open theory is popular.
- From the sinusoids the blood flow into the: - Red pulp veins
- which join the trabecular veins
- to form form the splenic vein
(Trabecular veins form channels without a wall lined by endothelium in the trabeculae.)
White pulp:
- Forms a lymph tissue sheath around the central artery
- The lymphocytes around the central artery is called the periarterial lymphatic sheath (PALS).
- Which contains mainly T lymphocytes
- So the PALS is chracterized by a central artery.
- True nodules may also be present as an extension of the PALS.
- They displace the central artery so that it lies eccentric.
- Nodules normally have a germinal center and consists mainly of B lymphocytes
- Between the red and white pulp there is a marginal zone consisting of:
- Many sinuses and of loose lymphoid tissue.
- There are few lymphocytes
- many macrophages
- lots of blood antigens which
- play a major role in immunologic activity.
Red Pulp:
- In the fresh state this tissue has a red colour because of the many erythrocytes.
- Red pulp consists of splenic sinusses separated by splenic cords (cords of Billroth).
- Between reticular cells are macrophages, lymphocytes, granulocytes and plasma cells.
- Many of the macrophages are in the process of phagocytosing damaged erythrocytes.
- The splenic sinusoids are special sinusoidal vessels in the following ways:
- It has a dilated large irregular lumen
- Spaces between unusually shaped endothelial cells permit exchange between sinusoids and adjacent tissues. (The endothelial cells are very long arranged parallel to the direction of the vessel)
- The basal lamina of the sinusoid is not continuous but form rings.
Tonsils
- Tonsils are incompletely encapsulated lymphoid tissues
- There are - Palatine tonsils
- pharyngeal tonsils
- lingual tonsils
Palatine Tonsil
- Contains dense lymphoid tissue.
- Covered by stratified squamous non-keratinized epithelium
- with an underlying CT capsule
- Crypts that enter the tissue end blind.
Lingual Tonsil
- Lie on the posterior 1/3 of the tongue.
- Crypts link up with underlying glands that flush them.
- Epithelial covering is the same as that of the palatine tonsil.
The Inferior Wall of the Orbit
- The thin inferior wall of the orbit or the floor is formed mainly by the orbital surface of the maxilla and partly by the zygomatic bone, and orbital process of the palatine bone.
- The floor of the orbit forms the roof of the maxillary sinus.
- The floor is partly separated from the lateral wall of the orbit by the inferior orbital fissure.
Muscles of the larynx
Extrinsic muscles
suprahyoid: raise larynx, depress mandible for swallowing
infrahyoid: lower larynx for swallowing
both stabilize hyoid for tongue movements
The External Ear
- The auricle (L. auris, ear) is the visible, shell-like part of the external ear.
- It consists of a single elastic cartilage that is covered on both surfaces with thin, hairy skin.
- The external ear contains hairs, sweat glands, and sebaceous glands.
- The cartilage is irregularly ridged and hollowed, which gives the auricle its shell-like form.
- It also shapes the orifice of the external acoustic meatus.
The Ear Lobule
- The ear lobule (earlobe) consists of fibrous tissue, fat and blood vessels that are covered with skin.
- The arteries are derived mainly from the posterior auricular artery and the superficial temporal artery.
- The skin of the auricle is supplied by the great auricular and auriculotemporal nerves.
- The great auricular nerve supplies the superior surface and the lateral surface inferior to the external acoustic meatus with nerve fibres from C2.
- The auriculotemporal nerve supplies the skin of the auricle superior to the external acoustic meatus.
The External Acoustic Meatus
- This passage extends from the concha (L. shell) of the auricle to the tympanic membrane (L. tympanum, tambourine). It is about 2.5 cm long in adults.
- The lateral 1/3 of the S-shaped canal is cartilaginous, whereas its medial 2/3 is bony.
- The lateral third of the meatus is lined with the skin of the auricle and contains hair follicles, sebaceous glands, and ceruminous glands.
- The latter glands produce cerumen (L. cera, wax).
- The medial two-thirds of the meatus is lined with very thin skin that is continuous with the external layer of the tympanic membrane.
- The lateral end of the meatus is the widest part. It has the diameter about that of a pencil.
- The meatus becomes narrow at its medial end, about 4 mm from the tympanic membrane.
- The constricted bony part is called the isthmus.
- Innervation of the external acoustic meatus is derived from three cranial nerves:
- The auricular branch of the auriculotemporal nerve (derived from the mandibular, CN V3).
- The facial nerve (CN VII) by the branches from the tympanic plexus.
- The auricular branch of the vagus nerve (CN X).
The Tympanic Membrane
- This is a thin, semi-transparent, oval membrane at the medial end of the external acoustic meatus.
- It forms a partition between the external and middle ears.
- The tympanic membrane is a thin fibrous membrane, that is covered with very thin skin externally and mucous membrane internally.
- The tympanic membrane shows a concavity toward the meatus with a central depression, the umbo, which is formed by the end of the handle of the malleus.
- From the umbo, a bright area referred to as the cone of light, radiates anteroinferiorly.
- The external surface of the tympanic membrane is supplied by the auriculotemporal nerve.
- Some innervation is supplied by a small auricular branch of the vagus nerve (CN X); this nerve may also contain some glossopharyngeal and facial nerve fibres.
Classification
Epitheliums can be classified on appearance or on function
Classification based on appearance
- Simple - one layer of cells
- Pseudostratified - looks like more than one layer but is not
- Stratified - more than one layer of cells
Simple epitheliums
Simple squamous epithelium
Cells are flat with bulging or flat nuclei. Lines the insides of lung alveoli and certain ducts in the kidney
Forms serous membranes called mesothelium that line cavities like: pericardial , peritoneal, plural
Lines blood vessels - known as endothelium
Simple cuboidal epithelium
It appears square in cross section, Found in: - Ducts of salivary glands, Follicles of the thyroid gland, Pigment layer in the eye, Collecting ducts of the kidney, In the middle ear is ciliated type.
Simple columnar
- Lines the gastrointestinal tract from the stomach to the anal canal, Some columnar cells have a secretory function – stomach, peg cells in the oviduct, Some columnar cells have microvilli on their free border (striated border) – gall bladder, duodenum
- Microvilli increase the surface area for absorption
- Some columnar cells have cilia – oviduct, smaller bronchi
- Cilia transport particles
Pseudostratified
Appears as stratified epithelium but all cells are in contact with the basement membrane. Has a thick basement membrane. Different cell types make up this epithelium, Cells that can be found in this type of epithelium are:
- Columnar cells with cilia or microvilli.
- Basal cells that do not reach the surface.
- Goblet cells that secrete mucous.
- Found in the trachea, epididymus, ductus deferens and female urethra
Stratified epithelium
Classified according to the shape of the surface cells
Stratified squamous epithelium
Has a basal layer that varies from cuboidal to columnar cells that divide to form new cells. Two types are found:
Keratinized: Mostly forms a dry covering, The middle layers consists of cells that are forming- and filling up with keratin. The superficial cells form a tough non living layer of keratin, Keratin is a type of protein, The skin is of this type has thick skin - found on the hand palms and soles of the feet, thin skin - found on the rest of the body
Non-keratinized: Top layer of cells are living cells with nuclei Forms a wet covering, The middle layers are polyhedral, The surface layer consists of flat squamous cells
- Is found in: mouth, oesophagus, vagina
Stratified cuboidal epithelium
Found: - in the ducts of sweat glands
Stratified columnar epithelium
Found at the back of the eyelid (conjunctiva)
Transitional epithelium
- Sometimes the surface cells are squamous, sometimes cuboidal and sometimes columnar
- The superficial cells are called umbrella cells because they can open and close like umbrellas, when the epithelium stretch and shrink
- Umbrella cells can have 2 nuclei
- Found in the bladder and ureter