NEET MDS Lessons
Physiology
Neurons :
Types of neurons based on structure:
a multipolar neuron because it has many poles or processes, the dendrites and the axon. Multipolar neurons are found as motor neurons and interneurons. There are also bipolar neurons with two processes, a dendrite and an axon, and unipolar neurons, which have only one process, classified as an axon.. Unipolar neurons are found as most of the body's sensory neurons. Their dendrites are the exposed branches connected to receptors, the axon carries the action potential in to the central nervous system.
Types of neurons based on function:
- motor neurons - these carry a message to a muscle, gland, or other effector. They are said to be efferent, i.e. they carry the message away from the central nervous system.
- sensory neurons - these carry a message in to the CNS. They are afferent, i.e. going toward the brain or spinal cord.
- interneuron (ie. association neuron, connecting neuron) - these neurons connect one neuron with another. For example in many reflexes interneurons connect the sensory neurons with the motor neurons.
Platelets
Platelets are cell fragments produced from megakaryocytes.
Blood normally contains 150,000 to 350,000 per microliter (µl). If this value should drop much below 50,000/µl, there is a danger of uncontrolled bleeding. This is because of the essential role that platelets have in blood clotting.
When blood vessels are damaged, fibrils of collagen are exposed.
- von Willebrand factor links the collagen to platelets forming a plug of platelets there.
- The bound platelets release ADP and thromboxane A2 which recruit and activate still more platelets circulating in the blood.
- (This role of thromboxane accounts for the beneficial effect of low doses of aspirin a cyclooxygenase inhibitor in avoiding heart attacks.)
ReoPro is a monoclonal antibody directed against platelet receptors. It inhibits platelet aggregation and appears to reduce the risk that "reamed out" coronary arteries (after coronary angioplasty) will plug up again.
Proteinuria—Protein content in urine, often due to leaky or damaged glomeruli.
Oliguria—An abnormally small amount of urine, often due to shock or kidney damage.
Polyuria—An abnormally large amount of urine, often caused by diabetes.
Dysuria—Painful or uncomfortable urination, often from urinary tract infections.
Hematuria—Red blood cells in urine, from infection or injury.
Glycosuria—Glucose in urine, due to excess plasma glucose in diabetes, beyond the amount able to be reabsorbed in the proximal convoluted tubule.
The defecation reflex:
As a result of the mass movements, pressure is exerted on the rectum and on the internal anal sphincter, which is smooth muscle, resulting in its involuntary relaxation. Afferent impulses are sent to the brain indicating the need to defecate. The external sphincter is voluntary muscle and is controlled by the voluntary nervous system. This sphincter is relaxed along with contraction of the rectal and abdominal muscles in the defecation reflex
Proteins:
- about 50 - 60% of the dry mass of a typical cell
- subunit is the amino acid & amino acids are linked by peptide bonds
- 2 functional categories = structural (proteins part of the structure of a cell like those in the cell membrane) & enzymes
Enzymes are catalysts. Enzymes bind temporarily to one or more of the reactants of the reaction they catalyze. In doing so, they lower the amount of activation energy needed and thus speed up the reaction
Properties of cardiac muscle
Cardiac muscle is a striated muscle like the skeletal muscle , but it is different from the skeletal muscle in being involuntary and syncytial .
Syncytium means that cardiac muscle cells are able to excite and contract together due to the presence of gap junctions between adjacent cardiac cells.
Cardiac muscle has four properties , due to which the heart is able to fulfill its function as a pumping organ. Studying and understanding these properties is essential for students to understand the cardiac physiology as a whole.
1. Rhythmicity ( Chronotropism )
2. Excitability ( Bathmotropism )
3. Conductivity
4. Contractility
PHYSIOLOGY OF THE BRAIN
- The Cerebrum (Telencephalon) Lobes of the cerebral cortex
- Frontal Lobe
- Precentral gyrus, Primary Motor Cortex, point to point motor neurons, pyramidal cells: control motor neurons of the brain and spinal cord. See Motor homunculus
- Secondary Motor Cortex repetitive patterns
- Broca's Motor Speech area
- Anterior - abstract thought, planning, decision making, Personality
- Parietal Lobe
- Post central gyrus, Sensory cortex, See Sensory homunculus, size proportional to sensory receptor density.
- Sensory Association area, memory of sensations
- Occipital Lobe
- Visual cortex, sight (conscious perception of vision)
- Visual Association area, correlates visual images with previous images, (memory of vision, )
- Temporal Lobe
- Auditory Cortex, sound
- Auditory Association area, memory of sounds
- Common Integratory Center - angular gyrus, Parietal, Temporal & Occipital lobes
- One side becomes dominent, integrats sensory (somesthetic, auditory, visual) information
- The Basal nuclei (ganglia)
- Grey matter (cell bodies) within the White matter of cerebrum, control voluntary movements
- Cauadate nucles - chorea (rapi, uncontrolled movements), Parkinsons: (dopamine neurons of substantia nigra to caudate nucles) jerky movements, spasticity, tremor, blank facial expression
- The limbic system - ring around the brain stem, emotions(w/hypothalamus), processing of olfactory information
- Frontal Lobe
- The Diencephalon
- The Thalamus - Sensory relay center to cortex (primitive brain!)
- The Hypothalamus
- core temperature control"thermostat", shivering and nonshivering thermogenesis
- hunger & satiety centers, wakefulness, sleep, sexual arousal,
- emotions (w/limbic-anger, fear, pain, pleasure), osmoregulation, (ADH secretion),
- Secretion of ADH, Oxytocin, Releasing Hormones for Anterior pitutary
- Linkage of nervous and endocrine systems
- The Mesencephalon or Midbrain -
- red nucleus, motor coordination (cerebellum/Motor cortex),
- substantia nigra
- The Metencephalon
- The Cerebellum -
- Performs automatic adjustments in complex motor activities
- Input from Proprioceptors (joint, tendon, muscles), position of body in Space
- Motor cortex, intended movements (changes in position of body in Space)
- Damping (breaking motor function), Balance, predicting, inhibitory function of Purkinji cells (GABA), speed, force, direction of movement
- The Pons - Respiratory control centers (apneustic, pneumotaxic)
- Nuclei of cranial nerves V, VI, VII, VIII
- The Cerebellum -
- Myelencephalon
- The Medulla
- Visceral motor centers (vasomotor, cardioinhibtory, respiratory)
- Reticular Formation RAS system, alert cortex to incoming signals, maintenance of consciousness, arousal from sleep
- All Afferent & Efferent fibers pass through, crossing over of motor tracts
- Corpus Callosum: Permits communication between cerebralhemispheres
- The Medulla
- Generalized Brain Avtivity
- Brain Activity and the Electroencephalogram(EEG)
- alpha waves: resting adults whose eyes are closed
- beta waves: adults concentrating on a specific task;
- theta waves: adults under stress;
- delta waves: during deep sleep and in clinical disorders
- Brain Seizures
- Grand Mal: generalized seizures, involvs gross motor activity, affects the individual for a matter or hours
- Petit mal: brief incidents, affect consciousness but may have no obvious motor abnormalities
- Chemical Effects on the Brain
- Sedatives: reduce CNS activity
- Analgesics: relieve pain by affecting pain pathways or peripheral sensations
- Psychotropics: alter mood and emotional states
- Anticonvulsants: control seizures
- Stimulants: facilitate CNS activity
- Memory and learning
- Short-term, or primary, memories last a short time, immediately accessible (phone number)
- Secondary memories fade with time (your address at age 5)
- Tertiary memories last a lifetime (your name)
- Memories are stored within specific regions of the cerebral cortex.
- Learning, a more complex process involving the integration of memories and their use to direct or modify behaviors
- Neural basis for memory and learning has yet to be determined.
- Brain Activity and the Electroencephalogram(EEG)
- Fibers in CNS
- Association fibers: link portions of the cerebrum;
- Commissural fibers: link the two hemispheres;
- Projection fibers: link the cerebrum to the brain stem