NEET MDS Lessons
Physiology
The Nerve Impulse
When a nerve is stimulated the resting potential changes. Examples of such stimuli are pressure, electricity, chemicals, etc. Different neurons are sensitive to different stimuli(although most can register pain). The stimulus causes sodium ion channels to open. The rapid change in polarity that moves along the nerve fiber is called the "action potential." In order for an action potential to occur, it must reach threshold. If threshold does not occur, then no action potential can occur. This moving change in polarity has several stages:
Depolarization
The upswing is caused when positively charged sodium ions (Na+) suddenly rush through open sodium gates into a nerve cell. The membrane potential of the stimulated cell undergoes a localized change from -55 millivolts to 0 in a limited area. As additional sodium rushes in, the membrane potential actually reverses its polarity so that the outside of the membrane is negative relative to the inside. During this change of polarity the membrane actually develops a positive value for a moment(+30 millivolts). The change in voltage stimulates the opening of additional sodium channels (called a voltage-gated ion channel). This is an example of a positive feedback loop.
Repolarization
The downswing is caused by the closing of sodium ion channels and the opening of potassium ion channels. Release of positively charged potassium ions (K+) from the nerve cell when potassium gates open. Again, these are opened in response to the positive voltage--they are voltage gated. This expulsion acts to restore the localized negative membrane potential of the cell (about -65 or -70 mV is typical for nerves).
Hyperpolarization
When the potassium ions are below resting potential (-90 mV). Since the cell is hyper polarized, it goes to a refractory phrase.
Refractory phase
The refractory period is a short period of time after the depolarization stage. Shortly after the sodium gates open, they close and go into an inactive conformation. The sodium gates cannot be opened again until the membrane is repolarized to its normal resting potential. The sodium-potassium pump returns sodium ions to the outside and potassium ions to the inside. During the refractory phase this particular area of the nerve cell membrane cannot be depolarized. This refractory area explains why action potentials can only move forward from the point of stimulation.
Factors that affect sensitivity and speed
Sensitivity
Increased permeability of the sodium channel occurs when there is a deficit of calcium ions. When there is a deficit of calcium ions (Ca+2) in the interstitial fluid, the sodium channels are activated (opened) by very little increase of the membrane potential above the normal resting level. The nerve fiber can therefore fire off action potentials spontaneously, resulting in tetany. This could be caused by the lack of hormone from parathyroid glands. It could also be caused by hyperventilation, which leads to a higher pH, which causes calcium to bind and become unavailable.
Speed of Conduction
This area of depolarization/repolarization/recovery moves along a nerve fiber like a very fast wave. In myelinated fibers, conduction is hundreds of times faster because the action potential only occurs at the nodes of Ranvier (pictured below in 'types of neurons') by jumping from node to node. This is called "saltatory" conduction. Damage to the myelin sheath by the disease can cause severe impairment of nerve cell function. Some poisons and drugs interfere with nerve impulses by blocking sodium channels in nerves. See discussion on drug at the end of this outline.
Carbon Dioxide Transport
Carbon dioxide (CO2) combines with water forming carbonic acid, which dissociates into a hydrogen ion (H+) and a bicarbonate ions:
CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3−
95% of the CO2 generated in the tissues is carried in the red blood cells:
- It probably enters (and leaves) the cell by diffusing through transmembrane channels in the plasma membrane. (One of the proteins that forms the channel is the D antigen that is the most important factor in the Rh system of blood groups.)
- Once inside, about one-half of the CO2 is directly bound to hemoglobin (at a site different from the one that binds oxygen).
- The rest is converted — following the equation above — by the enzyme carbonic anhydrase into
- bicarbonate ions that diffuse back out into the plasma and
- hydrogen ions (H+) that bind to the protein portion of the hemoglobin (thus having no effect on pH).
Only about 5% of the CO2 generated in the tissues dissolves directly in the plasma. (A good thing, too: if all the CO2 we make were carried this way, the pH of the blood would drop from its normal 7.4 to an instantly-fatal 4.5!)
When the red cells reach the lungs, these reactions are reversed and CO2 is released to the air of the alveoli.
1 - Passive processes - require no expenditure of energy by a cell:
- Simple diffusion = net movement of a substance from an area of high concentration to an area of low concentration. The rate of diffusion is influenced by:
- concentration gradient
- cross-sectional area through which diffusion occurs
- temperature
- molecular weight of a substance
- distance through which diffusion occurs
- Osmosis = diffusion of water across a semi permeable membrane (like a cell membrane) from an area of low solute concentration to an area of high solute concentration
- Facilitated diffusion = movement of a substance across a cell membrane from an area of high concentration to an area of low concentration. This process requires the use of 'carriers' (membrane proteins). In the example below, a ligand molecule (e.g., acetylcholine) binds to the membrane protein. This causes a conformational change or, in other words, an 'opening' in the protein through which a substance (e.g., sodium ions) can pass.
2 - Active processes - require the expenditure of energy by cells:
- Active transport = movement of a substance across a cell membrane from an area of low concentration to an area of high concentration using a carrier molecule
- Endo- & exocytosis - moving material into (endo-) or out of (exo-) cell in bulk form
Surface Tension
1. Maintains stability of alveolus, preventing collapse
2. Surfactant (Type II pneumocytes) = dipalmityl lecithin
3. Type II pneumocyte appears at 24 weeks of gestation;
1. Surfactant production, 28-32 weeks;
2. Surfactant in amniotic fluid, 35 weeks.
3. Laplace equation for thin walled spheres P = 2T
a. P = alveolar internal pressure r
b. T = tension in the walls r = radius of alveolus
4. During normal tidal respiration
1. Some alveoli do collapse (Tidal pressure can't open)
2. Higher than normal pressure needed (Coughing)
3. Deep breaths & sighs promote re-expansion
4. After surgery/Other conditions, Coughing, deep breathing, sustained maximal respiration
There are three types of muscle tissue, all of which share some common properties:
- Excitability or responsiveness - muscle tissue can be stimulated by electrical, physical, or chemical means.
- contractility - the response of muscle tissue to stimulation is contraction, or shortening.
- elasticity or recoil - muscles have elastic elements (later we will call these their series elastic elements) which cause them to recoil to their original size.
- stretchability or extensibility - muscles can also stretch and extend to a longer-than-resting length.
The three types of muscle: skeletal, cardiac, and visceral (smooth) muscle.
Skeletal muscle
It is found attached to the bones for movement.
cells are long multi-nucleated cylinders.
The cells may be many inches long but vary in diameter, averaging between 100 and 150 microns.
All the cells innervated by branches from the same neuron will contract at the same time and are referred to as a motor unit.
Skeletal muscle is voluntary because the neurons which innervate it come from the somatic or voluntary branch of the nervous system.
That means you have willful control over your skeletal muscles.
Skeletal muscles have distinct stripes or striations which identify them and are related to the organization of protein myofilaments inside the cell.
Cardiac muscle
This muscle found in the heart.
It is composed of much shorter cells than skeletal muscle which branch to connect to one another.
These connections are by means of gap junctions called intercalated disks which allow an electrochemical impulse to pass to all the connected cells.
This causes the cells to form a functional network called a syncytium in which the cells work as a unit. Many cardiac muscle cells are myogenic which means that the impulse arises from the muscle, not from the nervous system. This causes the heart muscle and the heart itself to beat with its own natural rhythm.
But the autonomic nervous system controls the rate of the heart and allows it to respond to stress and other demands. As such the heart is said to be involuntary.
Visceral muscle is found in the body's internal organs and blood vessels.
It is usually called smooth muscle because it has no striations and is therefore smooth in appearance. It is found as layers in the mucous membranes of the respiratory and digestive systems.
It is found as distinct bands in the walls of blood vessels and as sphincter muscles.
Single unit smooth muscle is also connected into a syncytium similar to cardiac muscle and is also partly myogenic. As such it causes continual rhythmic contractions in the stomach and intestine. There and in blood vessels smooth muscle also forms multiunit muscle which is stimulated by the autonomic nervous system. So smooth muscle is involuntary as well
The Stomach :
The wall of the stomach is lined with millions of gastric glands, which together secrete 400–800 ml of gastric juice at each meal. Three kinds of cells are found in the gastric glands
- parietal cells
- chief cells
- mucus-secreting cells
Parietal cells : secrete
Hydrochloric acid : Parietal cells contain a H+ ATPase. This transmembrane protein secretes H+ ions (protons) by active transport, using the energy of ATP.
Intrinsic factor: Intrinsic factor is a protein that binds ingested vitamin B12 and enables it to be absorbed by the intestine. A deficiency of intrinsic factor as a result of an autoimmune attack against parietal cells causes pernicious anemia.
Chief Cells : The chief cells synthesize and secrete pepsinogen, the precursor to the proteolytic enzyme pepsin.
Secretion by the gastric glands is stimulated by the hormone gastrin. Gastrin is released by endocrine cells in the stomach in response to the arrival of food.
Maintenance of Homeostasis
The kidneys maintain the homeostasis of several important internal conditions by controlling the excretion of substances out of the body.
Ions. The kidney can control the excretion of potassium, sodium, calcium, magnesium, phosphate, and chloride ions into urine. In cases where these ions reach a higher than normal concentration, the kidneys can increase their excretion out of the body to return them to a normal level. Conversely, the kidneys can conserve these ions when they are present in lower than normal levels by allowing the ions to be reabsorbed into the blood during filtration. (See more about ions.)
pH. The kidneys monitor and regulate the levels of hydrogen ions (H+) and bicarbonate ions in the blood to control blood pH. H+ ions are produced as a natural byproduct of the metabolism of dietary proteins and accumulate in the blood over time. The kidneys excrete excess H+ ions into urine for elimination from the body. The kidneys also conserve bicarbonate ions, which act as important pH buffers in the blood.
Osmolarity. The cells of the body need to grow in an isotonic environment in order to maintain their fluid and electrolyte balance. The kidneys maintain the body’s osmotic balance by controlling the amount of water that is filtered out of the blood and excreted into urine. When a person consumes a large amount of water, the kidneys reduce their reabsorption of water to allow the excess water to be excreted in urine. This results in the production of dilute, watery urine. In the case of the body being dehydrated, the kidneys reabsorb as much water as possible back into the blood to produce highly concentrated urine full of excreted ions and wastes. The changes in excretion of water are controlled by antidiuretic hormone (ADH). ADH is produced in the hypothalamus and released by the posterior pituitary gland to help the body retain water.
Blood Pressure. The kidneys monitor the body’s blood pressure to help maintain homeostasis. When blood pressure is elevated, the kidneys can help to reduce blood pressure by reducing the volume of blood in the body. The kidneys are able to reduce blood volume by reducing the reabsorption of water into the blood and producing watery, dilute urine. When blood pressure becomes too low, the kidneys can produce the enzyme renin to constrict blood vessels and produce concentrated urine, which allows more water to remain in the blood.