Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

  • The Autonomic Nervous System (ANS) Controls the Body's Internal Environment in a Coordinated Manner

  • The ANS helps control the heart rate, blood pressure, digestion, respiration, blood pH and other bodily functions through a series of complex reflex actions
  • These controls are done automatically, below the conscious level
  • To exert this control the activities of many different organs must be coordinated so they work to accomplish the same goal
  • In the ANS there are 2 nerves between the central nervous system (CNS) and the organ. The nerve cell bodies for the second nerve are organized into ganglia:
    • CNS -> Preganglionic nerve -> Ganglion -> Postganglionic nerve -> Organ
  • At each junction neurotransmitters are released and carry the signal to the next nerve or organ.
  • The ANS has 2 Divisions, Sympathetic and Parasympathetic

     

  • Comparison of the 2 systems:
  •  

    Anatomical
    Location

     Preganglionic
    Fibers

     Postganglionic
    Fibers

     Transmitter
    (Ganglia)

     Transmitter
    (Organs)

     Sympathetic

     Thoracic/
    Lumbar

     Short

    Long

    ACh

    NE

     Parasympathetic

     Cranial/
    Sacral

     Long

    Short

    ACh

    ACh

     

    The Sympathetic is the "Fight or Flight" Branch of the ANS

  • Emergency situations, where the body needs a sudden burst of energy, are handled by the sympathetic system
  • The sympathetic system increases cardiac output and pulmonary ventilation, routes blood to the muscles, raises blood glucose and slows down digestion, kidney filtration and other functions not needed during emergencies
  • Whole sympathetic system tends to "go off" together
  • In a controlled environment the sympathetic system is not required for life, but it is essential for any stressful situation
  • The Parasympathetic is the Rest and Digest Branch of the ANS

  • The parasympathetic system promotes normal maintenance of the body- acquiring building blocks and energy from food and getting rid of the wastes
  • It promotes secretions and mobility of different parts of the digestive tract.
  • Also involved in urination, defecation.
  • Does not "go off" together; activities initiated when appropriate
  • The vagus nerve (cranial number 10) is the chief parasympathetic nerve
  • Other cranial parasympathetic nerves are: III (oculomotor), VII (facial) and IX (glossopharyngeal)
  • The Hypothalamus Has Central Control of the ANS

  • The hypothalamus is involved in the coordination of ANS responses,
  • One section of the hypothalamus seems to control many of the "fight or flight" responses; another section favors "rest and digest" activities
  • The Adrenal Medulla is an Extension of the Sympathetic Nervous System

  • The adrenal medulla behaves like a combined autonomic ganglion and postsynaptic sympathetic nerve (see diagram above)
  • Releases both norepinephrine and epinephrine in emergency situations
    • Releases a mixture of epinephrine (E = 80%) and norepinephrine (NE = 20%)
    • Epinephrine = adrenaline
  • This action is under control of the hypothalamus
  • Sympathetic & Parasympathetic Systems

  • Usually (but not always) both sympathetic and parasympathetic nerves go to an organ and have opposite effects
  • You can predict about 90% of the sympathetic and parasympathetic responses using the 2 phrases: "Fight or Flight" and "Rest and Digest".
  • Special cases:
    • Occasionally the 2 systems work together: in sexual intercourse the parasympathetic promotes erection and the sympathetic produces ejaculation
    • Eye: the sympathetic response is dilation and relaxation of the ciliary muscle for far vision (parasympathetic does the opposite)
    • Urination: the parasympathetic system relaxes the sphincter muscle and promotes contraction of muscles of the bladder wall -> urination (sympathetic blocks urination)
    • Defecation: the parasympathetic system causes relaxation of the anal sphincter and stimulates colon and rectum to contract -> defecation (sympathetic blocks defecation)
  •  Organ

     Parasympathetic Response
    "Rest and Digest"

     Sympathetic Response
    "Fight or Flight"

     Heart
    (baroreceptor reflex)

    Decreased heart rate
    Cardiac output decreases

    Increased rate and strength of contraction
    Cardiac output increases

     Lung Bronchioles

     Constriction

    Dilation

     Liver Glycogen

    No effect

     Glycogen breakdown
    Blood glucose increases

     Fat Tissue

     No effect

    Breakdown of fat
    Blood fatty acids increase

     Basal Metabolism

     No effect

     Increases ~ 2X

     Stomach

     Increased secretion of HCl & digestive enzymes
    Increased motility

    Decreased secretion
    Decreased motility

     Intestine

     Increased secretion of HCl & digestive enzymes
    Increased motility

     Decreased secretion
    Decreased motility

     Urinary bladder

     Relaxes sphincter
    Detrusor muscle contracts
    Urination promoted

    Constricts sphincter
    Relaxes detrusor
    Urination inhibited

     Rectum

     Relaxes sphincter
    Contracts wall muscles
    Defecation promoted

     Constricts sphincter
    Relaxes wall muscles
    Defecation inhibited

     Eye

     Iris constricts
    Adjusts for near vision

    Iris dilates
    Adjusts for far vision

     Male Sex Organs

     Promotes erection

     Promotes ejaculation

     

  • There Are 12 Pairs of Cranial Nerves

  • The 12 pairs of cranial nerves emerge mainly from the ventral surface of the brain
  • Most attach to the medulla, pons or midbrain
  • They leave the brain through various fissures and foramina of the skull
  •  Nerve

     Name

     Sensory

     Motor

     Autonomic
    Parasympathetic

     I

     Olfactory

     Smell

     

     

     II

     Optic

     Vision

     

     

     III

    Oculomotor

     Proprioception

     4 Extrinsic eye muscles

      Pupil constriction
    Accomodation
    Focusing

     IV

     Trochlear

     Proprioception

     1 Extrinsic eye muscle (Sup.oblique)

     

     V

     Trigeminal

     Somatic senses
    (Face, tongue)

     Chewing

     

     VI

    Abducens

     Proprioception

     1 Extrinsic eye muscle (Lat. rectus)

     

     VII

     Facial

     Taste
    Proprioception
     

     Muscles of facial expression

     Salivary glands
    Tear glands

     VIII

     Auditory
    (Vestibulocochlear)

    Hearing, Balance

     

     

     IX

     Glossopharyngeal

     Taste
    Blood gases

     Swallowing
    Gagging

     Salivary glands

     X

     Vagus

    Blood pressure
    Blood gases
     Taste

     Speech
    Swallowing Gagging

    Many visceral organs
    (heart, gut, lungs)

     XI

     Spinal acessory

     Proprioception

     Neck muscles:
    Sternocleidomastoid
    Trapezius

     

     XII

     Hypoglossal

     Proprioception

     Tongue muscles
    Speech

     

     

  • Many of the functions that make us distinctly human are controlled by cranial nerves: special senses, facial expression, speech.
  • Cranial Nerves Contain Sensory, Motor and Parasympathetic Fibers

     

Control of processes in the stomach:

The stomach, like the rest of the GI tract, receives input from the autonomic nervous system. Positive stimuli come from the parasympathetic division through the vagus nerve. This stimulates normal secretion and motility of the stomach. Control occurs in several phases:

Cephalic phase stimulates secretion in anticipation of eating to prepare the stomach for reception of food. The secretions from cephalic stimulation are watery and contain little enzyme or acid.

Gastric phase of control begins with a direct response to the contact of food in the stomach and is due to stimulation of pressoreceptors in the stomach lining which result in ACh and histamine release triggered by the vagus nerve. The secretion and motility which result begin to churn and liquefy the chyme and build up pressure in the stomach. Chyme surges forward as a result of muscle contraction but is blocked from entering the duodenum by the pyloric sphincter. A phenomenon call retropulsion occurs in which the chyme surges backward only to be pushed forward once again into the pylorus. The presence of this acid chyme in the pylorus causes the release of a hormone called gastrin into the bloodstream. Gastrin has a positive feedback effect on the motility and acid secretion of the stomach. This causes more churning, more pressure, and eventually some chyme enters the duodenum.

Intestinal phase of stomach control occurs. At first this involves more gastrin secretion from duodenal cells which acts as a "go" signal to enhance the stomach action already occurring. But as more acid chyme enters the duodenum the decreasing pH inhibits gastrin secretion and causes the release of negative or "stop" signals from the duodenum.

These take the form of chemicals called enterogastrones which include GIP (gastric inhibitory peptide). GIP inhibits stomach secretion and motility and allows time for the digestive process to proceed in the duodenum before it receives more chyme. The enterogastric reflex also reduces motility and forcefully closes the pyloric sphincter. Eventually as the chyme is removed, the pH increases and gastrin and the "go" signal resumes and the process occurs all over again. This series of "go" and "stop" signals continues until stomach emptying is complete.

Plasma:  is the straw-colored liquid in which the blood cells are suspended.

Composition of blood plasma

Component

Percent

Water

~92

Proteins

6–8

Salts

0.8

Lipids

0.6

Glucose (blood sugar)

0.1

Plasma transports materials needed by cells and materials that must be removed from cells:

  • various ions (Na+, Ca2+, HCO3, etc.
  • glucose and traces of other sugars
  • amino acids
  • other organic acids
  • cholesterol and other lipids
  • hormones
  • urea and other wastes

Most of these materials are in transit from a place where they are added to the blood

  • exchange organs like the intestine
  • depots of materials like the liver

to places where they will be removed from the blood.

  • every cell
  • exchange organs like the kidney, and skin.

Vital Capacity: The vital capacity (VC) is the maximum volume which can be ventilated in a single breath. VC= IRV+TV+ERV. VC varies with gender, age, and body build. Measuring VC gives a device for diagnosis of respiratory disorder, and a benchmark for judging the effectiveness of treatment. (4600 ml)

Vital Capacity is reduced in restrictive disorders, but not in disorders which are purely obstructive.

The FEV1 is the % of the vital capacity which is expelled in the first second. It should be at least 75%. The FEV1 is reduced in obstructive disorders.

Both VC and the FEV1 are reduced in disorders which are both restrictive and obstructive

Oxygen is present at nearly 21% of ambient air. Multiplying .21 times 760 mmHg (standard pressure at sea level) yields a pO2 of about 160. Carbon dioxide is .04% of air and its partial pressure, pCO2, is .3.

With alveolar air having a pO2 of 104 and a pCO2 of 40. So oxygen diffuses into the alveoli from inspired air and carbon dioxide diffuses from the alveoli into air which will be expired. This causes the levels of oxygen and carbon dioxide to be intermediate in expired air when compared to inspired air and alveolar air. Some oxygen has been lost to the alveolus, lowering its level to 120, carbon dioxide has been gained from the alveolus raising its level to 27.

Likewise a concentration gradient causes oxygen to diffuse into the blood from the alveoli and carbon dioxide to leave the blood. This produces the levels seen in oxygenated blood in the body. When this blood reaches the systemic tissues the reverse process occurs restoring levels seen in deoxygenated blood.

Urine is a waste byproduct formed from excess water and metabolic waste molecules during the process of renal system filtration. The primary function of the renal system is to regulate blood volume and plasma osmolarity, and waste removal via urine is essentially a convenient way that the body performs many functions using one process. Urine formation occurs during three processes:

Filtration

Reabsorption

Secretion

Filtration

During filtration, blood enters the afferent arteriole and flows into the glomerulus where filterable blood components, such as water and nitrogenous waste, will move towards the inside of the glomerulus, and nonfilterable components, such as cells and serum albumins, will exit via the efferent arteriole. These filterable components accumulate in the glomerulus to form the glomerular filtrate.

Normally, about 20% of the total blood pumped by the heart each minute will enter the kidneys to undergo filtration; this is called the filtration fraction. The remaining 80% of the blood flows through the rest of the body to facilitate tissue perfusion and gas exchange.

Reabsorption

 

The next step is reabsorption, during which molecules and ions will be reabsorbed into the circulatory system. The fluid passes through the components of the nephron (the proximal/distal convoluted tubules, loop of Henle, the collecting duct) as water and ions are removed as the fluid osmolarity (ion concentration) changes. In the collecting duct, secretion will occur before the fluid leaves the ureter in the form of urine.

Secretion

During secretion some substances±such as hydrogen ions, creatinine, and drugs—will be removed from the blood through the peritubular capillary network into the collecting duct. The end product of all these processes is urine, which is essentially a collection of substances that has not been reabsorbed during glomerular filtration or tubular reabsorbtion.

Blood is a liquid tissue. Suspended in the watery plasma are seven types of cells and cell fragments.

  • red blood cells (RBCs) or erythrocytes
  • platelets or thrombocytes
  • five kinds of white blood cells (WBCs) or leukocytes
    • Three kinds of granulocytes
      • neutrophils
      • eosinophils
      • basophils
    • Two kinds of leukocytes without granules in their cytoplasm
      • lymphocytes
      • monocytes

Explore by Exams