Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

The Body Regulates pH in Several Ways

  • Buffers are weak acid mixtures (such as bicarbonate/CO2) which minimize pH change
    • Buffer is always a mixture of 2 compounds
      • One compound takes up H ions if there are too many (H acceptor)
      • The second compound releases H ions if there are not enough (H donor)
    • The strength of a buffer is given by the buffer capacity
      • Buffer capacity is proportional to the buffer concentration and to a parameter known as the pK
    • Mouth bacteria produce acids which attack teeth, producing caries (cavities). People with low buffer capacities in their saliva have more caries than those with high buffer capacities.
  • CO2 gas (a potential acid) is eliminated by the lungs
  • Other acids and bases are eliminated by the kidneys

Damage to Spinal Nerves and Spinal Cord

Damage

Possible cause of damage

Symptoms associated with innervated area

Peripheral nerve

Mechanical injury

Loss of muscle tone. Loss of reflexes. Flaccid paralysis. Denervation atrophy. Loss of sensation

Posterior root

Tabes dorsalis

Paresthesia. Intermittent sharp pains. Decreased sensitivity to pain. Loss of reflexes. Loss of sensation. Positive Romberg sign. High stepping and slapping of feet.

Anterior Horn

Poliomyelitis

Loss of muscle tone.  Loss of reflexes. Flaccid paralysis.  Denervation atrophy

Lamina X (gray matter)

Syringomyelia

Bilateral loss of pain and temperature sense only at afflicted cord level. Sensory dissociation. No sensory impairment below afflicted level

Anterior horn and lateral corticospinal tract

Amyotrophic lateral sclerosis

Muscle weakness.  Muscle atrophy. Fasciculations of hand and arm muscles. Spastic paralysis

Posterior and lateral funiculi

Subacute combined degeneration

Loss of position sense. Loss of vibratory sense. Positive Romberg sign. Muscle weakness. Spasticity. Hyperactive tendon reflexes. Positive Babinski sign.

Hemisection of the spinal cord

Mechanical injury

Brown-Sequard syndrome

Below cord level on injured side

Flaccid paralysis. Hyperactive tendon reflexes. Loss of position sense. Loss of vibratory sense. Tactile impairment

Below cord level on opposite side beginning one or two segments below injury

Loss of pain and temperature

Membrane Structure & Function

Cell Membranes

  • Cell membranes are phospholipid bilayers (2 layers)
  • Bilayer forms a barrier to passage of molecules in an out of cell
  • Phospholipids = glycerol + 2 fatty acids + polar molecule (i.e., choline) + phosphate
  • Cholesterol (another lipid) stabilizes cell membranes
  • the hydrophobic tails of the phospholipids (fatty acids) are together in the center of the bilayer. This keeps them out of the water

Membranes Also Contain Proteins

  • Proteins that penetrate the membrane have hydrophobic sections ~25 amino acids long
  • Hydrophobic = doesn't like water = likes lipids
  • Membrane proteins have many functions:
    • receptors for hormones
    • pumps for transporting materials across the membrane
    • ion channels
    • adhesion molecules for holding cells to extracellular matrix

cell recognition antigens

Transport of Carbon Dioxide

A.    Dissolved in Blood Plasma (7-10%)

B.    Bound to Hemoglobin (20-30%)

1.    carbaminohemoglobin - Carb Dioxide binds to an amino acid on the polypeptide chains

2.    Haldane Effect - the less oxygenated blood is, the more Carb Diox it can carry

a.    tissues - as Oxygen is unloaded, affinity for Carb Dioxide increases
b.    lungs - as Oxygen is loaded, affinity for Carb Dioxide decreases, allowing it to be released

C.    Bicarbonate Ion Form in Plasma (60-70%)

1.    Carbon Dioxide combines with water to form Bicarbonate

CO2 + H2O <==> H2CO3 <==> H+ + HCO3-

2.    carbonic anhydrase - enzyme in RBCs that catalyzes this reaction in both directions

a.    tissues - catalyzes formation of Bicarbonate
b.    lungs - catalyzes formation of Carb Dioxide

3.    Bohr Effect - formation of Bicarbonate (through Carbonic Acid) leads to LOWER pH (H+ increase), and more unloading of Oxygen to tissues

a.    since hemoglobin "buffers" to H+, the actual pH of blood does not change much

4.    Chloride Shift - chloride ions move in opposite direction of the entering/leaving Bicarbonate, to prevent osmotic problems with RBCs

D.    Carbon Dioxide Effects on Blood pH

1.    carbonic acid-bicarbonate buffer system
    
low pH       → HCO3- binds to H+
high pH     →   H2CO3 releases H+
    
2.     low shallow breaths    → HIGH Carb Dioxide    → LOW pH (higher H+)
3.     rapid deep breaths     → LOW Carb Dioxide   → HIGH pH (lower H+)

COPD and Cancer

A.    Chronic Obstructive Pulmonary Disease (COPD)

1.    Common features of COPD

a.    almost all have smoking history
b.    dyspnea - chronic "gasping" for air
c.    frequent coughing and infections
d.    often leads to respiratory failure

2.    obstructive emphysema - usually results from smoking

a.    enlargement & deterioration of alveoli
b.    loss of elasticity of the lungs
c.    "barrel chest" from bronchiole opening during inhalation & constriction during exhalation

3.    chronic bronchitis - mucus/inflammation of mucosa

B.    Lung Cancer

1.    squamous cell carcinoma (20-40%) - epithelium of the bronchi and bronchioles
2.    adenocarcinoma (25-35%) - cells of bronchiole glands and cells of the alveoli
3.    small cell carcinoma (10-20%) - special lymphocyte-like cells of the bronchi
4.    90% of all lung cancers are in people who smoke or have smoked 
 

  • it's the individual pressure exerted independently by a particular gas within a mixture of gasses. The air we breath is a mixture of gasses: primarily nitrogen, oxygen, & carbon dioxide. So, the air you blow into a balloon creates pressure that causes the balloon to expand (& this pressure is generated as all the molecules of nitrogen, oxygen, & carbon dioxide move about & collide with the walls of the balloon). However, the total pressure generated by the air is due in part to nitrogen, in part to oxygen, & in part to carbon dioxide. That part of the total pressure generated by oxygen is the 'partial pressure' of oxygen, while that generated by carbon dioxide is the 'partial pressure' of carbon dioxide. A gas's partial pressure, therefore, is a measure of how much of that gas is present (e.g., in the blood or alveoli). 
     
  • the partial pressure exerted by each gas in a mixture equals the total pressure times the fractional composition of the gas in the mixture. So, given that total atmospheric pressure (at sea level) is about 760 mm Hg and, further, that air is about 21% oxygen, then the partial pressure of oxygen in the air is 0.21 times 760 mm Hg or 160 mm Hg.

Membrane Potential

  • Membrane potentials will occur across cell membranes if
    • 1) there is a concentration gradient of an ion
    • 2) there is an open channel in the membrane so the ion can move from one side to the other

The Sodium Pump Sets Up Gradients of Na and K Across Cell Membranes

  • All cells have the Na pump in their membranes
    • Pumps 3 Nas out and 2 Ks in for each cycle
    • Requires energy from ATP
      • Uses about 30% of body's metabolic energy
    • This is a form of active transport- can pump ions "uphill", from a low to a high concentration
    • This produces concentration gradients of Na & K across the membrane
    • Typical concentration gradients:

 

 In mM/L

 Out mM/L

 Gradient orientation

 Na

 10

 150

 High outside

 K

 140

 5

 High inside

  •  
  • The ion gradients represent stored electrical energy (batteries) that can be tapped to do useful work
  • The Na pump is of ancient origin, probably originally designed to protect cell from osmotic swelling

Inhibited by the arrow poisons ouabain and digitalis

Explore by Exams