Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Bronchitis = Irreversible Bronchioconstriction
 .    Causes - Infection, Air polution, cigarette smoke

a.    Primary Defect = Enlargement & Over Activity of Mucous Glands, Secretions very viscous
b.    Hypertrophy & hyperplasia, Narrows & Blocks bronchi, Lumen of airway, significantly narrow
c.    Impaired Clearance by mucocillary elevator
d.    Microorganism retension in lower airways,Prone to Infectious Bronchitis, Pneumonia
e.    Permanent Inflamatory Changes IN epithelium, Narrows walls, Symptoms, Excessive sputum, coughing
f.    CAN CAUSE EMPHYSEMA

Bile - produced in the liver and stored in the gallbladder, released in response to CCK . Bile salts (salts of cholic acid) act to emulsify fats, i.e. to split them so that they can mix with water and be acted on by lipase.

Pancreatic juice: Lipase - splits fats into glycerol and fatty acids. Trypsin, and chymotrypsin - protease enzymes which break polypeptides into dipeptides. Carboxypeptidase - splits dipeptide into amino acids. Bicarbonate - neutralizes acid. Amylase - splits polysaccharides into shorter chains and disaccharides.

Intestinal enzymes (brush border enzymes): Aminopeptidase and carboxypeptidase - split dipeptides into amino acids. Sucrase, lactase, maltase - break disaccharides into monosaccharides. Enterokinase - activates trypsinogen to produce trypsin. Trypsin then activates the precursors of chymotrypsin and carboxypeptidase. Other carbohydrases: dextrinase and glucoamylase. These are of minor importance.

Neural Substrates of Breathing

A.    Medulla Respiratory Centers

Inspiratory Center (Dorsal Resp Group - rhythmic breathing) → phrenic nerve→ intercostal nerves→ diaphragm + external intercostals

Expiratory Center (Ventral Resp Group - forced expiration) → phrenic nerve → intercostal nerves → internal intercostals + abdominals (expiration)

1.    eupnea - normal resting breath rate (12/minute)
2.    drug overdose - causes suppression of Inspiratory Center

B.    Pons Respiratory Centers

1.    pneumotaxic center - slightly inhibits medulla, causes shorter, shallower, quicker breaths
2.    apneustic center - stimulates the medulla, causes longer, deeper, slower breaths

C.    Control of Breathing Rate & Depth

1.    breathing rate - stimulation/inhibition of medulla
2.    breathing depth - activation of inspiration muscles
3.    Hering-Breuer Reflex - stretch of visceral pleura that lungs have expanded (vagal nerve)

D.    Hypothalamic Control - emotion + pain to the medulla

E.    Cortex Controls (Voluntary Breathing) - can override medulla as during singing and talking

Functional Divisions of the Nervous System:

1) The Voluntary Nervous System - (ie. somatic division) control of willful control of effectors (skeletal muscles) and conscious perception. Mediates voluntary reflexes.

2) The Autonomic Nervous System - control of autonomic effectors - smooth muscles, cardiac muscle, glands. Responsible for "visceral" reflexes

Production of Hormones

The kidneys produce and interact with several hormones that are involved in the control of systems outside of the urinary system.

Calcitriol. Calcitriol is the active form of vitamin D in the human body. It is produced by the kidneys from precursor molecules produced by UV radiation striking the skin. Calcitriol works together with parathyroid hormone (PTH) to raise the level of calcium ions in the bloodstream. When the level of calcium ions in the blood drops below a threshold level, the parathyroid glands release PTH, which in turn stimulates the kidneys to release calcitriol. Calcitriol promotes the small intestine to absorb calcium from food and deposit it into the bloodstream. It also stimulates the osteoclasts of the skeletal system to break down bone matrix to release calcium ions into the blood.
 
Erythropoietin. Erythropoietin, also known as EPO, is a hormone that is produced by the kidneys to stimulate the production of red blood cells. The kidneys monitor the condition of the blood that passes through their capillaries, including the oxygen-carrying capacity of the blood. When the blood becomes hypoxic, meaning that it is carrying deficient levels of oxygen, cells lining the capillaries begin producing EPO and release it into the bloodstream. EPO travels through the blood to the red bone marrow, where it stimulates hematopoietic cells to increase their rate of red blood cell production. Red blood cells contain hemoglobin, which greatly increases the blood’s oxygen-carrying capacity and effectively ends the hypoxic conditions.
 
Renin. Renin is not a hormone itself, but an enzyme that the kidneys produce to start the renin-angiotensin system (RAS). The RAS increases blood volume and blood pressure in response to low blood pressure, blood loss, or dehydration. Renin is released into the blood where it catalyzes angiotensinogen from the liver into angiotensin I. Angiotensin I is further catalyzed by another enzyme into Angiotensin II.

Angiotensin II stimulates several processes, including stimulating the adrenal cortex to produce the hormone aldosterone. Aldosterone then changes the function of the kidneys to increase the reabsorption of water and sodium ions into the blood, increasing blood volume and raising blood pressure. Negative feedback from increased blood pressure finally turns off the RAS to maintain healthy blood pressure levels.

Glomerular filtration

Kidneys receive about 20% of cardiac output , this is called Renal Blood Flow (RBF) which is approximatley 1.1 L of blood. Plasma in this flow is about 625 ml . It is called Renal Plasma Flow (RPF) .
About 20 % of Plasma entering the glomerular capillaries is filtered into the Bowman`s capsule .
Glomerular filtration rate is about 125 ml/min ( which means 7.5 L/hr and thus 180 L/day) This means that the kidney filters about 180 liters of plasma every day.

The urine flow is about 1ml/min ( about 1.5 liter /day) This means that kidney reabsorbs about 178.5 liters every day .

Filtration occurs through the filtration unit , which includes :

1- endothelial cells of glomerular capillaries , which are fenestrated . Fenestrae are quite small so they prevent filtration of blood cells and most of plasma proteins .

2- Glomerular basement membrane : contains proteoglycan that is negatively charged and repels the negatively charged plasma proteins that may pass the fenestrae due to their small molecular weight like albumin . so the membrane plays an important role in impairing filtration of albumin .

3- Epithelial cells of Bowman`s capsule that have podocytes , which interdigitate to form slits .


Many forces drive the glomerular filtration , which are :

1- Hydrostatic pressure of the capillary blood , which favours filtration . It is about 55 mmHg .

2- Oncotic pressure of the plasma proteins in the glomerular capillary ( opposes filtration ) . It is about 30 mm Hg .

3- Hydrostatic pressure of the Bowman`s capsule , which also opposes filtration. It is about 15 mmHg .

The net pressure is as follows :

Hydrostatic pressure of glomerular capillaries - ( Oncotic pressure of glomerular capillaries + Hydrostatic pressure of the Bowman capsule):
55-(35+10)
=55-45
=10 mmHg .

Te glomerular filtration rate does not depend only on the net pressure , but also on an other value , known as filtration coefficient ( Kf) . The later depends on the surface area of the glomerular capillaries and the hydraulic conductivity of the glomerular capillaries.
 

Remember the following principles before proceeding :
- Reabsorption occurs for most of substances that have been previously filterd .
- The direction of reabsorption is from the tubules to the peritubular capillaries
- All of transport mechanism are used here.
- Different morphology of the cells of different parts of the tubules contribute to reabsorption of different substances .
- There are two routes of reabsorption: Paracellular and transcellular : Paracellular reabsorption depends on the tightness of the tight junction which varies from regeon to region in the nephrons .Transcellular depends on presence of transporters ( carriers and channels for example).


1. Reabsorption of glucose , amino acids , and proteins :

Transport of glucose occurs in the proximal tubule . Cells of proximal tubules are similar to those of the intestinal mucosa as the apical membrane has brush border form to increase the surface area for reabsorption , the cells have plenty of mitochondria which inform us that high amount of energy is required for active transport , and the basolateral membrane of the cells contain sodium -potassium pumps , while the apical membrane contains a lot of carrier and channels .

The tight junction between the tubular cells of the proximal tubules are not that (tight) which allow paracellular transport.
Reabsorption of glucose starts by active transport of  Na by the pumps on the basolateral membrane . This will create Na gradient which will cause Na to pass the apical membrane down its concentration gradient . Glucose also passes the membrane up its concentration gradient using sodium -glucose symporter as a secondary active transport.


The concentration of glucose will be increased in the cell and this will enable the glucose to pass down concentration gradient to the interstitium by glucose uniporter . Glucose will then pass to the peritubular capillaries by simple bulk flow.

Remember: Glucose reabsorption occurs via transcellular route .
          Glucose transport has transport maximum . In normal situation there is no glucose in the urine , but in uncontrolled diabetes mellitus patients glucose level exceeds its transport maximum (390 mg/dl) and thus will appear in urine .
                   
                   
                   
2. Reabsorption of Amino acids : Use secondary active transport mechanism like glucose.

3. Reabsorption of proteins : 

Plasma proteins are not filtered in Bowman capsule but some proteins and peptides in blood may pass the filtration membrane and then reabsorbed . Some peptides are reabsorbed paracellulary , while the others bind to the apical membrane and then enter the cells by endocytosis , where they will degraded by peptidase enzymes to amino acids .

4. Reabsorption of sodium , water , and chloride:

65 % of sodium is reabsorbed in the proximal tubules , while 25% are reabsorbed in the thick ascending limb of loob of Henle , 9% in the distal and collecting tubules and collecting ducts .
90% of sodium reabsorption occurs independently from its plasma level (unregulated) , This is true for sodium reabsorbed in proximal tubule and loop of Henle , while the 9% that is reabsorbed in distal ,collecting tubules and collecting ducts is regulated by Aldosterone. 


In proximal tubules : 65% of sodium is reabsorbed . The initial step occurs by creating sodium gradient  by sodium-potassium pump on the basolateral membrane . then the sodium will pass from the lumen into the cells down concentration gradient by sodium -glucose symporter , sodium -phosphate symporter and by sodium- hydrogen antiporter and others                    
                   
After reabsorption of sodium , an electrical gradient will be created , then chloride is reabsorbed following the sodium  . Thus the major cation and anion leave the lumen to the the interstitium and thus the water follows by osmosis . 65% of water is reabsorbed in the proximal tubule.

Discending limb of loop of Henle is impermeable to electrolytes but avidly permeable to water . 10 % of water is reabsorbed in the discending thin limb of loob of Henle .

The thick ascending limb of loop of Henly is permeable to electrolytes , due to the presence of Na2ClK syporter . 25% of sodium is reabsorbed here .

In the distal and collecting tubules and the collecting ducts 9% of sodium is reabsorbed .this occurs under aldosterone control depending on sodium plasma level. 1% of sodium is excreted .

Water is not reabsorbed from distal tubule but 5-25% of water is reabsorbed in collecting tubules .

Explore by Exams