Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Events in gastric function:

1) Signals from vagus nerve begin gastric secretion in cephalic phase.

2) Physical contact by food triggers release of pepsinogen and H+ in gastric phase.

3) Muscle contraction churns and liquefies chyme and builds pressure toward pyloric sphincter.

4) Gastrin is released into the blood by cells in the pylorus. Gastrin reinforces the other stimuli and acts as a positive feedback mechanism for secretion and motility.

5) The intestinal phase begins when acid chyme enters the duodenum. First more gastrin secretion causes more acid secretion and motility in the stomach.

6) Low pH inhibits gastrin secretion and causes the release of enterogastrones such as GIP into the blood, and causes the enterogastric reflex. These events stop stomach emptying and allow time for digestion in the duodenum before gastrin release again stimulates the stomach.

The hepatic portal system

The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:

  • Glucose is removed and converted into glycogen.
  • Other monosaccharides are removed and converted into glucose.
  • Excess amino acids are removed and deaminated.
    • The amino group is converted into urea.
    • The residue can then enter the pathways of cellular respiration and be oxidized for energy.
  • Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.

The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.

Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by

  • converting its glycogen stores to glucose (glycogenolysis)
  • converting certain amino acids into glucose (gluconeogenesis).

SPECIAL SOMATIC AFFERENT (SSA) PATHWAYS

Hearing

The organ of Corti with its sound-sensitive hair cells and basilar membrane are important parts of the sound transducing system for hearing. Mechanical vibrations of the basilar membrane generate membrane potentials in the hair cells which produce impulse patterns in the cochlear portion of the vestibulocochlear nerve (VIII)

Special somatic nerve fibers of cranial nerve VIII relay impulses from the sound receptors (hair cells) in the cochlear nuclei of the brainstem

These are bipolar neurons with cell bodies located in the spiral ganglia of the cochlea.

Vestibular System

The vestibulocochlear nerve serves two quite different functions.

The cochlear portion, conducts sound information to the brain,

The vestibular portion conducts proprioceptive information.

It is the central neural pathways

Special somatic afferent fibers from the hair cells of the macula utriculi and macula sacculi conduct information into the vestibular nuclei on the ipsilateral side of the pons and medulla.

These are bipolar neurons with cell bodies located in the vestibular ganglion.

 Some of the fibers project directly into the ipsilateral cerebellum to terminate in the uvula, flocculus, and nodulus, but most enter the vestibular nuclei and synapse there.

Vision

The visual system receptors are the rods and cones of the retina.

Special somatic afferent fibers of the optic nerve (II) conduct visual signals into the brain

Fibers from the lateral (temporal) retina of either eye terminate in the lateral geniculate body on the same side of the brain as that eye.

SSA II fibers from the medial (nasal) retina of each eye cross over in the optic chiasm to terminate in the contralateral lateral geniculate body.

Area 17 is the primary visual area, which receives initial visual signals.

Neurons from this area project into the adjacent occipital cortex (areas 18 and 19) which is known as the secondary visual area. It is here that the visual signal is fully evaluated.

The visual reflex pathway involving the pupillary light reflex - in which the pupils constrict when a light is shined into the eyes and dilate when the light is removed.

Some SSA II fibers leave the optic tract before reaching the lateral geniculates, terminating in the superior colliculi instead.

From here, short neurons project to the Edinger­Westphal nucleus (an accessory nucleus of III) in the midbrain, which serves as the origin of the preganglionic parasympathetic fibers of the oculomotor nerve (GVE III).

The GVE III fibers in turn project to the ciliary ganglia, from which arise the postganglionic fibers to the sphincter muscles of the iris, which constrict the pupils.

Levels of Organization:

CHEMICAL LEVEL - includes all chemical substances necessary for life (see, for example, a small portion - a heme group - of a hemoglobin molecule); together form the next higher level

CELLULAR LEVEL - cells are the basic structural and functional units of the human body & there are many different types of cells (e.g., muscle, nerve, blood)

TISSUE LEVEL - a tissue is a group of cells that perform a specific function and the basic types of tissues in the human body include epithelial, muscle, nervous, and connective tissues

ORGAN LEVEL - an organ consists of 2 or more tissues that perform a particular function (e.g., heart, liver, stomach)

SYSTEM LEVEL - an association of organs that have a common function; the major systems in the human body include digestive, nervous, endocrine, circulatory, respiratory, urinary, and reproductive.

There are two types of cells that make up all living things on earth: prokaryotic and eukaryotic. Prokaryotic cells, like bacteria, have no 'nucleus', while eukaryotic cells, like those of the human body, do.

Factors , affecting glomerular filtration rate :

 Factors that may influence the different pressure forces , or the filtration coefficient will affect the glomerular filtration rate . 
 
1. Dehydration : Causes decrease hydrostatic pressure , and thus decreases GFR
2- Liver diseases that may decrease the plasma proteins and decrease the oncotic pressure , and thus increases glomerular filtration rate .
3- Sympathetic stimulation : will decrease the diameter of afferent arteriole and thus decreases glomerular filtration rate.
4- Renal diseases : Nephrotic syndrome for example decreases the number of working nephrons and thus decreases the filtration coefficient and thus decreases the glomerular filtration rate.
Glomerulonephritis will causes thickening of the glomerular basement membrane and thus decreases the glomerular filtration rate by decreasing the filtration coefficient too.

Membrane Potential

  • Membrane potentials will occur across cell membranes if
    • 1) there is a concentration gradient of an ion
    • 2) there is an open channel in the membrane so the ion can move from one side to the other

The Sodium Pump Sets Up Gradients of Na and K Across Cell Membranes

  • All cells have the Na pump in their membranes
    • Pumps 3 Nas out and 2 Ks in for each cycle
    • Requires energy from ATP
      • Uses about 30% of body's metabolic energy
    • This is a form of active transport- can pump ions "uphill", from a low to a high concentration
    • This produces concentration gradients of Na & K across the membrane
    • Typical concentration gradients:

 

 In mM/L

 Out mM/L

 Gradient orientation

 Na

 10

 150

 High outside

 K

 140

 5

 High inside

  •  
  • The ion gradients represent stored electrical energy (batteries) that can be tapped to do useful work
  • The Na pump is of ancient origin, probably originally designed to protect cell from osmotic swelling

Inhibited by the arrow poisons ouabain and digitalis

Heart sounds


Heart sounds are a result of beating heart and resultant blood flow . that could be detected by a stethoscope during auscultation . Auscultation is a part of physical examination that doctors have to practice them perfectly.
Before discussion the origin and nature of the heart sounds we have to distinguish between the heart sounds and hurt murmurs. Heart murmurs are pathological noises that results from abnormal blood flow in the heart or blood vessels.
Physiologically , blood flow has a laminar pattern , which means that blood flows in form of layers , where the central layer is the most rapid . Laminar blood flow could be turned into turbulent one .

Turbulent blood flow is a result of stenotic ( narrowed ) valves or blood vessels , insufficient valves , roughened vessels` wall or endocardium ,  and many diseases . The turbulent blood flow causes noisy murmurs inside or outside the heart.

Heart sounds ( especially first and second sounds ) are mainly a result of closure of the valves of the heart . While the third sound is a result of vibration of ventricular wall and the leaflets of the opened AV valves after rapid inflow of blood from the atria to ventricles . 

Third heart sound is physiologic in children but pathological in adults.

The four heart sound is a result of the atrial systole and vibration of the AV valves , due to blood rush during atrial systole . It is inaudible neither in adults nor in children . It is just detectable by the phonocardiogram .


Characteristic of heart sounds :

1. First heart sound  (S1 , lub ) : a soft and low pitch sound, caused by closure of AV valves.Usually has two components ( M1( mitral ) and T1 ( tricuspid ). Normally M1 preceads T1.

2. Second heart sound ( S2 , dub) : sharp and high pitch sound . caused by closure of semilunar valves. It also has two components A2 ( aortic) and P2 ( pulmonary) . A2 preceads P2.

3. Third heart sound (S3) : low pitched sound.

4. Fourth heart sound ( S4) very low pitched sound.

As we notice : the first three sounds are related to ventricular activity , while the fourth heart sound is related to atrial activity.
Closure of valves is not the direct cause for heart sounds , but sharp blocking of blood of backward returning of blood by the closing valve is the direct cause.
 

Explore by Exams