NEET MDS Lessons
Physiology
The thyroid gland is a double-lobed structure located in the neck. Embedded in its rear surface are the four parathyroid glands.
The Thyroid Gland
The thyroid gland synthesizes and secretes:
- thyroxine (T4) and
- calcitonin
T4 and T3
Thyroxine (T4 ) is a derivative of the amino acid tyrosine with four atoms of iodine. In the liver, one atom of iodine is removed from T4 converting it into triiodothyronine (T3). T3 is the active hormone. It has many effects on the body. Among the most prominent of these are:
- an increase in metabolic rate
- an increase in the rate and strength of the heart beat.
The thyroid cells responsible for the synthesis of T4 take up circulating iodine from the blood. This action, as well as the synthesis of the hormones, is stimulated by the binding of TSH to transmembrane receptors at the cell surface.
Diseases of the thyroid
1. hypothyroid diseases; caused by inadequate production of T3
- cretinism: hypothyroidism in infancy and childhood leads to stunted growth and intelligence. Can be corrected by giving thyroxine if started early enough.
- myxedema: hypothyroidism in adults leads to lowered metabolic rate and vigor. Corrected by giving thyroxine.
- goiter: enlargement of the thyroid gland. Can be caused by:
- inadequate iodine in the diet with resulting low levels of T4 and T3;
- an autoimmune attack against components of the thyroid gland (called Hashimoto's thyroiditis).
2. hyperthyroid diseases; caused by excessive secretion of thyroid hormones
Graves´ disease. Autoantibodies against the TSH receptor bind to the receptor mimicking the effect of TSH binding. Result: excessive production of thyroid hormones. Graves´ disease is an example of an autoimmune disease.
Osteoporosis. High levels of thyroid hormones suppress the production of TSH through the negative-feedback mechanism mentioned above. The resulting low level of TSH causes an increase in the numbers of bone-reabsorbing osteoclasts resulting in osteoporosis.
Calcitonin
Calcitonin is a polypeptide of 32 amino acids. The thyroid cells in which it is synthesized have receptors that bind calcium ions (Ca2+) circulating in the blood. These cells monitor the level of circulating Ca2+. A rise in its level stimulates the cells to release calcitonin.
- bone cells respond by removing Ca2+ from the blood and storing it in the bone
- kidney cells respond by increasing the excretion of Ca2+
Both types of cells have surface receptors for calcitonin.
Because it promotes the transfer of Ca2+ to bones, calcitonin has been examined as a possible treatment for osteoporosis
The pituitary gland is pea-sized structure located at the base of the brain. In humans, it consists of two lobes:
- the Anterior Lobe and
- the Posterior Lobe
The Anterior Lobe
The anterior lobe contains six types of secretory cells All of them secrete their hormone in response to hormones reaching them from the hypothalamus of the brain.
Thyroid Stimulating Hormone (TSH)
TSH (also known as thyrotropin) is a glycoprotein The secretion of TSH is
- stimulated by the arrival of thyrotropin releasing hormone (TRH) from the hypothalamus.
- inhibited by the arrival of somatostatin from the hypothalamus.
TSH stimulates the thyroid gland to secrete its hormone thyroxine (T4).
Some develop antibodies against their own TSH receptors making more T4 causing hyperthyroidism. The condition is called thyrotoxicosis or Graves' disease.
Hormone deficiencies
A deficiency of TSH causes hypothyroidism: inadequate levels of T4 (and thus of T3 )..
Follicle-Stimulating Hormone (FSH)
FSH is a heterodimeric glycoprotein Synthesis and release of FSH is triggered by the arrival from the hypothalamus of gonadotropin-releasing hormone (GnRH).
FSH in females :In sexually-mature females, FSH (assisted by LH) acts on the follicle to stimulate it to release estrogens.
FSH in males :In mature males, FSH acts on spermatogonia stimulating (with the aid of testosterone) the production of sperm.
Luteinizing Hormone (LH)
LH is synthesized within the same pituitary cells as FSH and under the same stimulus (GnRH). It is also a heterodimeric glycoprotein
LH in females
In sexually-mature females, LH
- stimulates the follicle to secrete estrogen in the first half of the menstrual cycle
- a surge of LH triggers the completion of meiosis I of the egg and its release (ovulation) in the middle of the cycle
- stimulates the now-empty follicle to develop into the corpus luteum, which secretes progesterone during the latter half of the menstrual cycle.
LH in males
LH acts on the interstitial cells (also known as Leydig cells) of the testes stimulating them to synthesize and secrete the male sex hormone, testosterone.
LH in males is also known as interstitial cell stimulating hormone (ICSH).
Prolactin (PRL)
Prolactin is a protein of 198 amino acids. During pregnancy it helps in the preparation of the breasts for future milk production. After birth, prolactin promotes the synthesis of milk.
Prolactin secretion is
- stimulated by TRH
- repressed by estrogens and dopamine.
Growth Hormone (GH)
- Human growth hormone (also called somatotropin) is a protein
- The GH-secreting cells are stimulated to synthesize and release GH by the intermittent arrival of growth hormone releasing hormone (GHRH) from the hypothalamus. GH promotes body growth
In Child
- hyposecretion of GH produces dwarfism
- hypersecretion leads to gigantism
In adults, a hypersecretion of GH leads to acromegaly.
ACTH — the adrenocorticotropic hormone
ACTH acts on the cells of the adrenal cortex, stimulating them to produce
- glucocorticoids, like cortisol
- mineralocorticoids, like aldosterone
- androgens (male sex hormones, like testosterone
Hypersecretion of ACTH cause of Cushing's disease.
The large intestine (colon)
The large intestine receives the liquid residue after digestion and absorption are complete. This residue consists mostly of water as well as materials (e.g. cellulose) that were not digested. It nourishes a large population of bacteria (the contents of the small intestine are normally sterile). Most of these bacteria (of which one common species is E. coli) are harmless. And some are actually helpful, for example, by synthesizing vitamin K. Bacteria flourish to such an extent that as much as 50% of the dry weight of the feces may consist of bacterial cells. Reabsorption of water is the chief function of the large intestine. The large amounts of water secreted into the stomach and small intestine by the various digestive glands must be reclaimed to avoid dehydration.
- it's the individual pressure exerted independently by a particular gas within a mixture of gasses. The air we breath is a mixture of gasses: primarily nitrogen, oxygen, & carbon dioxide. So, the air you blow into a balloon creates pressure that causes the balloon to expand (& this pressure is generated as all the molecules of nitrogen, oxygen, & carbon dioxide move about & collide with the walls of the balloon). However, the total pressure generated by the air is due in part to nitrogen, in part to oxygen, & in part to carbon dioxide. That part of the total pressure generated by oxygen is the 'partial pressure' of oxygen, while that generated by carbon dioxide is the 'partial pressure' of carbon dioxide. A gas's partial pressure, therefore, is a measure of how much of that gas is present (e.g., in the blood or alveoli).
- the partial pressure exerted by each gas in a mixture equals the total pressure times the fractional composition of the gas in the mixture. So, given that total atmospheric pressure (at sea level) is about 760 mm Hg and, further, that air is about 21% oxygen, then the partial pressure of oxygen in the air is 0.21 times 760 mm Hg or 160 mm Hg.
The Body Regulates pH in Several Ways
- Buffers are weak acid mixtures (such as bicarbonate/CO2) which minimize pH change
- Buffer is always a mixture of 2 compounds
- One compound takes up H ions if there are too many (H acceptor)
- The second compound releases H ions if there are not enough (H donor)
- The strength of a buffer is given by the buffer capacity
- Buffer capacity is proportional to the buffer concentration and to a parameter known as the pK
- Mouth bacteria produce acids which attack teeth, producing caries (cavities). People with low buffer capacities in their saliva have more caries than those with high buffer capacities.
- Buffer is always a mixture of 2 compounds
- CO2 gas (a potential acid) is eliminated by the lungs
- Other acids and bases are eliminated by the kidneys
-
Partial Pressures of O2 and CO2 in the body (normal, resting conditions):
- Alveoli
- PO2 = 100 mm Hg
- PCO2 = 40 mm Hg
- Alveolar capillaries
- Entering the alveolar capillaries
- PO2 = 40 mm Hg (relatively low because this blood has just returned from the systemic circulation & has lost much of its oxygen)
- PCO2 = 45 mm Hg (relatively high because the blood returning from the systemic circulation has picked up carbon dioxide)
- Entering the alveolar capillaries
-
While in the alveolar capillaries, the diffusion of gasses occurs: oxygen diffuses from the alveoli into the blood & carbon dioxide from the blood into the alveoli.
- Leaving the alveolar capillaries
- PO2 = 100 mm Hg
- PCO2 = 40 mm Hg
- Blood leaving the alveolar capillaries returns to the left atrium & is pumped by the left ventricle into the systemic circulation. This blood travels through arteries & arterioles and into the systemic, or body, capillaries. As blood travels through arteries & arterioles, no gas exchange occurs.
-
- Entering the systemic capillaries
- PO2 = 100 mm Hg
- PCO2 = 40 mm Hg
- Body cells (resting conditions)
- PO2 = 40 mm Hg
- PCO2 = 45 mm Hg
- Entering the systemic capillaries
- Because of the differences in partial pressures of oxygen & carbon dioxide in the systemic capillaries & the body cells, oxygen diffuses from the blood & into the cells, while carbon dioxide diffuses from the cells into the blood.
-
- Leaving the systemic capillaries
- PO2 = 40 mm Hg
- PCO2 = 45 mm Hg
- Leaving the systemic capillaries
- Blood leaving the systemic capillaries returns to the heart (right atrium) via venules & veins (and no gas exchange occurs while blood is in venules & veins). This blood is then pumped to the lungs (and the alveolar capillaries) by the right ventricle.
The pancreas
The pancreas consists of clusters if endocrine cells (the islets of Langerhans) and exocrine cells whose secretions drain into the duodenum.
Pancreatic fluid contains:
- sodium bicarbonate (NaHCO3). This neutralizes the acidity of the fluid arriving from the stomach raising its pH to about 8.
- pancreatic amylase. This enzyme hydrolyzes starch into a mixture of maltose and glucose.
- pancreatic lipase. The enzyme hydrolyzes ingested fats into a mixture of fatty acids and monoglycerides. Its action is enhanced by the detergent effect of bile.
- 4 zymogens— proteins that are precursors to active proteases. These are immediately converted into the active proteolytic enzymes:
- trypsin. Trypsin cleaves peptide bonds on the C-terminal side of arginines and lysines.
- chymotrypsin. Chymotrypsin cuts on the C-terminal side of tyrosine, phenylalanine, and tryptophan residues (the same bonds as pepsin, whose action ceases when the NaHCO3 raises the pH of the intestinal contents).
- elastase. Elastase cuts peptide bonds next to small, uncharged side chains such as those of alanine and serine.
- carboxypeptidase. This enzyme removes, one by one, the amino acids at the C-terminal of peptides.
- nucleases. These hydrolyze ingested nucleic acids (RNA and DNA) into their component nucleotides.
The secretion of pancreatic fluid is controlled by two hormones:
- secretin, which mainly affects the release of sodium bicarbonate, and
- cholecystokinin (CCK), which stimulates the release of the digestive enzymes.