NEET MDS Lessons
Physiology
GENERAL SOMATIC AFFERENT (GSA) PATHWAYS FROM THE BODY
Pain and Temperature
Pain and temperature information from general somatic receptors is conducted over small-diameter (type A delta and type C) GSA fibers of the spinal nerves into the posterior horn of the spinal cord gray matter .
Fast and Slow Pain
Fast pain, often called sharp or pricking pain, is usually conducted to the CNS over type A delta fibers.
Slow pain, often called burning pain, is conducted to the CNS over smaller-diameter type C fibers.
Touch and Pressure
Touch can be subjectively described as discriminating or crude.
Discriminating (epicritic) touch implies an awareness of an object's shape, texture, three-dimensional qualities, and other fine points. Ability to recognize familiar objects simply by tactile manipulation.
The conscious awareness of body position and movement is called the kinesthetic sens
Crude (protopathic) touch, lacks the fine discrimination described above and doesn't generally give enough information to the brain to enable it to recognize a familiar object by touch alone.
Subconscious Proprioception
Most of the subconscious proprioceptive input is shunted to the cerebellum.
Posterior Funiculus Injury
Certain clinical signs are associated with injury to the dorsal columns.
As might be expected, these are generally caused by impairment to the kinesthetic sense and discriminating touch and pressure pathways.
They include
(1) the inability to recognize limb position,
(2) astereognosis,
(3) loss of two-point discrimination,
(4) loss of vibratory sense, and
(5) a positive Romberg sign.
Astereognosis is the inability to recognize familiar objects by touch alone. When asked to stand erect with feet together and eyes closed, a person with dorsal column damage may sway and fall. This is a positive Romberg sign.
Production of Hormones
The kidneys produce and interact with several hormones that are involved in the control of systems outside of the urinary system.
Calcitriol. Calcitriol is the active form of vitamin D in the human body. It is produced by the kidneys from precursor molecules produced by UV radiation striking the skin. Calcitriol works together with parathyroid hormone (PTH) to raise the level of calcium ions in the bloodstream. When the level of calcium ions in the blood drops below a threshold level, the parathyroid glands release PTH, which in turn stimulates the kidneys to release calcitriol. Calcitriol promotes the small intestine to absorb calcium from food and deposit it into the bloodstream. It also stimulates the osteoclasts of the skeletal system to break down bone matrix to release calcium ions into the blood.
Erythropoietin. Erythropoietin, also known as EPO, is a hormone that is produced by the kidneys to stimulate the production of red blood cells. The kidneys monitor the condition of the blood that passes through their capillaries, including the oxygen-carrying capacity of the blood. When the blood becomes hypoxic, meaning that it is carrying deficient levels of oxygen, cells lining the capillaries begin producing EPO and release it into the bloodstream. EPO travels through the blood to the red bone marrow, where it stimulates hematopoietic cells to increase their rate of red blood cell production. Red blood cells contain hemoglobin, which greatly increases the blood’s oxygen-carrying capacity and effectively ends the hypoxic conditions.
Renin. Renin is not a hormone itself, but an enzyme that the kidneys produce to start the renin-angiotensin system (RAS). The RAS increases blood volume and blood pressure in response to low blood pressure, blood loss, or dehydration. Renin is released into the blood where it catalyzes angiotensinogen from the liver into angiotensin I. Angiotensin I is further catalyzed by another enzyme into Angiotensin II.
Angiotensin II stimulates several processes, including stimulating the adrenal cortex to produce the hormone aldosterone. Aldosterone then changes the function of the kidneys to increase the reabsorption of water and sodium ions into the blood, increasing blood volume and raising blood pressure. Negative feedback from increased blood pressure finally turns off the RAS to maintain healthy blood pressure levels.
SPECIAL VISCERAL AFFERENT (SVA) PATHWAYS
Taste
Special visceral afferent (SVA) fibers of cranial nerves VII, IX, and X conduct signals into the solitary tract of the brainstem, ultimately terminating in the nucleus of the solitary tract on the ipsilateral side.
Second-order neurons cross over and ascend through the brainstem in the medial lemniscus to the VPM of the thalamus.
Thalamic projections to area 43 (the primary taste area) of the postcentral gyrus complete the relay.
SVA VII fibers conduct from the chemoreceptors of taste buds on the anterior twothirds of the tongue, while SVA IX fibers conduct taste information from buds on the posterior one-third of the tongue.
SVA X fibers conduct taste signals from those taste cells located throughout the fauces.
Smell
The smell-sensitive cells (olfactory cells) of the olfactory epithelium project their central processes through the cribiform plate of the ethmoid bone, where they synapse with mitral cells. The central processes of the mitral cells pass from the olfactory bulb through the olfactory tract, which divides into a medial and lateral portion The lateral olfactory tract terminates in the prepyriform cortex and parts of the amygdala of the temporal lobe.
These areas represent the primary olfactory cortex. Fibers then project from here to area 28, the secondary olfactory area, for sensory evaluation. The medial olfactory tract projects to the anterior perforated substance, the septum pellucidum, the subcallosal area, and even the contralateral olfactory tract.
Both the medial and lateral olfactory tracts contribute to the visceral reflex pathways, causing the viscerosomatic and viscerovisceral responses.
Phases of cardiac cycle :
1. Early diastole ( also called the atrial diastole , or complete heart diastole) : During this phase :
- Atria are relaxed
- Ventricles are relaxed
- Semilunar valves are closed
- Atrioventricular valves are open
During this phase the blood moves passively from the venous system into the ventricles ( about 80 % of blood fills the ventricles during this phase.
2. Atrial systole : During this phase :
- Atria are contracting
- Ventricles are relaxed
- AV valves are open
- Semilunar valves are closed
- Atrial pressure increases.the a wave of atrial pressure appears here.
- P wave of ECG starts here
- intraventricular pressure increases due to the rush of blood then decrease due to continuous relaxation of ventricles.
The remaining 20% of blood is moved to fill the ventricles during this phase , due to atrial contraction.
3. Isovolumetric contraction : During this phase :
- Atria are relaxed
- Ventricles are contracting
- AV valves are closed
- Semilunar valves are closed
- First heart sound
- QRS complex.
The ventricular fibers start to contract during this phase , and the intraventricular pressure increases. This result in closing the AV valves , but the pressure is not yet enough to open the semilunar valves , so the blood volume remain unchanged , and the muscle fibers length also remain unchanged , so we call this phase as isovolumetric contraction ( iso : the same , volu= volume , metric= length).
4. Ejection phase : Blood is ejected from the ventricles into the aorta and pulmonary artery .
During this phase :
- Ventricles are contracting
- Atria are relaxed
- AV valves are closed
- Semilunar valves are open
- First heart sound
- Intraventricular pressure is increased , due to continuous contraction
- increased aortic pressure .
- T wave starts.
5. Isovolumetric relaxation: This phase due to backflow of blood in aorta and pulmonary system after the ventricular contraction is up and the ventricles relax . This backflow closes the semilunar valves .
During this phase :
- Ventricles are relaxed
- Atrial are relaxed
- Semilunar valves are closed .
- AV valves are closed.
- Ventricular pressure fails rapidly
- Atrial pressure increases due to to continuous venous return. the v wave appears here.
- Aortic pressure : initial sharp decrease due to sudden closure of the semilunar valve ( diacrotic notch) , followed by secondary rise in pressure , due to elastic recoil of the aorta ( diacrotic wave) .
- T wave ends in this phase
Blood Pressure
Blood moves through the arteries, arterioles, and capillaries because of the force created by the contraction of the ventricles.
Blood pressure in the arteries.
The surge of blood that occurs at each contraction is transmitted through the elastic walls of the entire arterial system where it can be detected as the pulse. Even during the brief interval when the heart is relaxed — called diastole — there is still pressure in the arteries. When the heart contracts — called systole — the pressure increases.
Blood pressure is expressed as two numbers, e.g., 120/80.
Blood pressure in the capillaries
The pressure of arterial blood is largely dissipated when the blood enters the capillaries. Capillaries are tiny vessels with a diameter just about that of a red blood cell (7.5 µm). Although the diameter of a single capillary is quite small, the number of capillaries supplied by a single arteriole is so great that the total cross-sectional area available for the flow of blood is increased. Therefore, the pressure of the blood as it enters the capillaries decreases.
Blood pressure in the veins
When blood leaves the capillaries and enters the venules and veins, little pressure remains to force it along. Blood in the veins below the heart is helped back up to the heart by the muscle pump. This is simply the squeezing effect of contracting muscles on the veins running through them. One-way flow to the heart is achieved by valves within the veins
Exchanges Between Blood and Cells
With rare exceptions, our blood does not come into direct contact with the cells it nourishes. As blood enters the capillaries surrounding a tissue space, a large fraction of it is filtered into the tissue space. It is this interstitial or extracellular fluid (ECF) that brings to cells all of their requirements and takes away their products. The number and distribution of capillaries is such that probably no cell is ever farther away than 50 µm from a capillary.
When blood enters the arteriole end of a capillary, it is still under pressure produced by the contraction of the ventricle. As a result of this pressure, a substantial amount of water and some plasma proteins filter through the walls of the capillaries into the tissue space.
Thus fluid, called interstitial fluid, is simply blood plasma minus most of the proteins. (It has the same composition and is formed in the same way as the nephric filtrate in kidneys.)
Interstitial fluid bathes the cells in the tissue space and substances in it can enter the cells by diffusion or active transport. Substances, like carbon dioxide, can diffuse out of cells and into the interstitial fluid.
Near the venous end of a capillary, the blood pressure is greatly reduced .Here another force comes into play. Although the composition of interstitial fluid is similar to that of blood plasma, it contains a smaller concentration of proteins than plasma and thus a somewhat greater concentration of water. This difference sets up an osmotic pressure. Although the osmotic pressure is small, it is greater than the blood pressure at the venous end of the capillary. Consequently, the fluid reenters the capillary here.
Control of the Capillary Beds
An adult human has been estimated to have some 60,000 miles of capillaries with a total surface area of some 800–1000 m2. The total volume of this system is roughly 5 liters, the same as the total volume of blood. However, if the heart and major vessels are to be kept filled, all the capillaries cannot be filled at once. So a continual redirection of blood from organ to organ takes place in response to the changing needs of the body. During vigorous exercise, for example, capillary beds in the skeletal muscles open at the expense of those in the viscera. The reverse occurs after a heavy meal.
The walls of arterioles are encased in smooth muscle. Constriction of arterioles decreases blood flow into the capillary beds they supply while dilation has the opposite effect. In time of danger or other stress, for example, the arterioles supplying the skeletal muscles will be dilated while the bore of those supplying the digestive organs will decrease. These actions are carried out by
- the autonomic nervous system.
- local controls in the capillary beds
Function of Blood
- transport through the body of
- oxygen and carbon dioxide
- food molecules (glucose, lipids, amino acids)
- ions (e.g., Na+, Ca2+, HCO3−)
- wastes (e.g., urea)
- hormones
- heat
- defense of the body against infections and other foreign materials. All the WBCs participate in these defenses
Carbohydrates:
- about 3% of the dry mass of a typical cell
- composed of carbon, hydrogen, & oxygen atoms (e.g., glucose is C6H12O6)
- an important source of energy for cells
- types include:
- monosaccharide (e.g., glucose) - most contain 5 or 6 carbon atoms
- disaccharides
- 2 monosaccharides linked together
- Examples include sucrose (a common plant disaccharide is composed of the monosaccharides glucose and fructose) & lactose (or milk sugar; a disaccharide composed of glucose and the monosaccharide galactose)
- polysaccharides
- several monosaccharides linked together
Examples include starch (a common plant polysaccharide made up of many glucose molecules) and glycogen (commonly stored in the liver)