NEET MDS Lessons
Physiology
Serum Proteins
Proteins make up 6–8% of the blood. They are about equally divided between serum albumin and a great variety of serum globulins.
After blood is withdrawn from a vein and allowed to clot, the clot slowly shrinks. As it does so, a clear fluid called serum is squeezed out. Thus:
Serum is blood plasma without fibrinogen and other clotting factors.
The serum proteins can be separated by electrophoresis.
- The most prominent of these and the one that moves closest to the positive electrode is serum albumin.
- Serum albumin
- is made in the liver
- binds many small molecules for transport through the blood
- helps maintain the osmotic pressure of the blood
- The other proteins are the various serum globulins.
- alpha globulins (e.g., the proteins that transport thyroxine and retinol [vitamin A])
- beta globulins (e.g., the iron-transporting protein transferrin)
- gamma globulins.
- Gamma globulins are the least negatively-charged serum proteins. (They are so weakly charged, in fact, that some are swept in the flow of buffer back toward the negative electrode.)
- Most antibodies are gamma globulins.
- Therefore gamma globulins become more abundant following infections or immunizations.
The Types of muscle cells. There are three types, red, white, and intermediate.
|
White Fibers Fast twitch Large diameter, used for speed and strength. Depends on the phosphagen system and on glycolysis-lactic acid. Stores glycogen for conversion to glucose. Fewer blood vessels. Little or no myoglobin. |
Red Fibers Slow twitch Small diameter, used for endurance. Depends on aerobic metabolism. Utilize fats as well as glucose. Little glycogen storage. Many blood vessels and much myoglobin give this muscle its reddish appearance. |
Intermediate Fibers: sometimes called "fast twitch red", these fibers have faster action but rely more on aerobic metabolism and have more endurance. Most muscles are mixtures of the different types. Muscle fiber types and their relative abundance cannot be varied by training, although there is some evidence that prior to maturation of the muscular system the emphasis on certain activities can influence their development
Lung volumes and capacities:
I. Lung`s volumes
1. Tidal volume (TV) : is the volume of air m which is inspired and expired during one quiet breathing . It equals to 500 ml.
2. Inspiratory reserve volume (IRV) : The volume of air that could be inspired over and beyond the tidal volume. It equals to 3000 ml of air.
3. Expiratory reserve volume (ERV) : A volume of air that could be forcefully expired after the end of quiet tidal volume. It is about 1100 ml of air.
4. Residual volume (RV) : the extra volume of air that may remain in the lung after the forceful expiration . It is about 1200 ml of air.
5. Minute volume : the volume of air that is inspired or expired within one minute. It is equal to multiplying of respiratory rate by tidal volume = 12X500= 6000 ml.
It is in female lesser than that in male.
II. Lung`s capacities :
1. Inspiratory capacity: TV + IRV
2. Vital capacity : TV+IRV+ERV
3. Total lung capacity : TV+IRV+ERV+RV
Levels of Organization:
CHEMICAL LEVEL - includes all chemical substances necessary for life (see, for example, a small portion - a heme group - of a hemoglobin molecule); together form the next higher level
CELLULAR LEVEL - cells are the basic structural and functional units of the human body & there are many different types of cells (e.g., muscle, nerve, blood)
TISSUE LEVEL - a tissue is a group of cells that perform a specific function and the basic types of tissues in the human body include epithelial, muscle, nervous, and connective tissues
ORGAN LEVEL - an organ consists of 2 or more tissues that perform a particular function (e.g., heart, liver, stomach)
SYSTEM LEVEL - an association of organs that have a common function; the major systems in the human body include digestive, nervous, endocrine, circulatory, respiratory, urinary, and reproductive.
There are two types of cells that make up all living things on earth: prokaryotic and eukaryotic. Prokaryotic cells, like bacteria, have no 'nucleus', while eukaryotic cells, like those of the human body, do.
Regulation of glomerular filtration :
1. Extrinsic regulation :
- Neural regulation : sympathetic and parasympathetic nervous system which causes vasoconstriction or vasodilation respectively .
- Humoral regulation : Vasoactive substances may affect the GFR , vasoconstrictive substances like endothelin ,Angiotensin II , Norepinephrine , prostaglandine F2 may constrict the afferent arteriole and thus decrease GFR , while the vasodilative agents like dopamine , NO , ANP , Prostaglandines E2 may dilate the afferent arteriole and thus increase the filtration rate .
2. Intrinsic regulation :
- Myogenic theory ( as in the intrinsic regulation of cardiac output) .
- Tubuloglomerular feedback: occurs by cells of the juxtaglomerular apparatus that is composed of specific cells of the distal tubules when it passes between afferent and efferent arterioles ( macula densa cells ) , these cells sense changes in flow inside the tubules and inform specific cells in the afferent arteriole (granular cells ) , the later secrete vasoactive substances that affect the diameter of the afferent arteriole.
-
The Autonomic Nervous System (ANS) Controls the Body's Internal Environment in a Coordinated Manner
- The ANS helps control the heart rate, blood pressure, digestion, respiration, blood pH and other bodily functions through a series of complex reflex actions
- These controls are done automatically, below the conscious level
- To exert this control the activities of many different organs must be coordinated so they work to accomplish the same goal
- In the ANS there are 2 nerves between the central nervous system (CNS) and the organ. The nerve cell bodies for the second nerve are organized into ganglia:
- CNS -> Preganglionic nerve -> Ganglion -> Postganglionic nerve -> Organ
- At each junction neurotransmitters are released and carry the signal to the next nerve or organ.
-
The ANS has 2 Divisions, Sympathetic and Parasympathetic
- Comparison of the 2 systems:
-
Anatomical
LocationPreganglionic
FibersPostganglionic
FibersTransmitter
(Ganglia)Transmitter
(Organs)Sympathetic
Thoracic/
LumbarShort
Long
ACh
NE
Parasympathetic
Cranial/
SacralLong
Short
ACh
ACh
The Sympathetic is the "Fight or Flight" Branch of the ANS
- Emergency situations, where the body needs a sudden burst of energy, are handled by the sympathetic system
- The sympathetic system increases cardiac output and pulmonary ventilation, routes blood to the muscles, raises blood glucose and slows down digestion, kidney filtration and other functions not needed during emergencies
- Whole sympathetic system tends to "go off" together
- In a controlled environment the sympathetic system is not required for life, but it is essential for any stressful situation
-
The Parasympathetic is the Rest and Digest Branch of the ANS
- The parasympathetic system promotes normal maintenance of the body- acquiring building blocks and energy from food and getting rid of the wastes
- It promotes secretions and mobility of different parts of the digestive tract.
- Also involved in urination, defecation.
- Does not "go off" together; activities initiated when appropriate
- The vagus nerve (cranial number 10) is the chief parasympathetic nerve
- Other cranial parasympathetic nerves are: III (oculomotor), VII (facial) and IX (glossopharyngeal)
-
The Hypothalamus Has Central Control of the ANS
- The hypothalamus is involved in the coordination of ANS responses,
- One section of the hypothalamus seems to control many of the "fight or flight" responses; another section favors "rest and digest" activities
-
The Adrenal Medulla is an Extension of the Sympathetic Nervous System
- The adrenal medulla behaves like a combined autonomic ganglion and postsynaptic sympathetic nerve (see diagram above)
- Releases both norepinephrine and epinephrine in emergency situations
- Releases a mixture of epinephrine (E = 80%) and norepinephrine (NE = 20%)
- Epinephrine = adrenaline
- This action is under control of the hypothalamus
-
Sympathetic & Parasympathetic Systems
- Usually (but not always) both sympathetic and parasympathetic nerves go to an organ and have opposite effects
- You can predict about 90% of the sympathetic and parasympathetic responses using the 2 phrases: "Fight or Flight" and "Rest and Digest".
- Special cases:
- Occasionally the 2 systems work together: in sexual intercourse the parasympathetic promotes erection and the sympathetic produces ejaculation
- Eye: the sympathetic response is dilation and relaxation of the ciliary muscle for far vision (parasympathetic does the opposite)
- Urination: the parasympathetic system relaxes the sphincter muscle and promotes contraction of muscles of the bladder wall -> urination (sympathetic blocks urination)
- Defecation: the parasympathetic system causes relaxation of the anal sphincter and stimulates colon and rectum to contract -> defecation (sympathetic blocks defecation)
-
Organ
Parasympathetic Response
"Rest and Digest"Sympathetic Response
"Fight or Flight"Heart
(baroreceptor reflex)Decreased heart rate
Cardiac output decreasesIncreased rate and strength of contraction
Cardiac output increasesLung Bronchioles
Constriction
Dilation
Liver Glycogen
No effect
Glycogen breakdown
Blood glucose increasesFat Tissue
No effect
Breakdown of fat
Blood fatty acids increaseBasal Metabolism
No effect
Increases ~ 2X
Stomach
Increased secretion of HCl & digestive enzymes
Increased motilityDecreased secretion
Decreased motilityIntestine
Increased secretion of HCl & digestive enzymes
Increased motilityDecreased secretion
Decreased motilityUrinary bladder
Relaxes sphincter
Detrusor muscle contracts
Urination promotedConstricts sphincter
Relaxes detrusor
Urination inhibitedRectum
Relaxes sphincter
Contracts wall muscles
Defecation promotedConstricts sphincter
Relaxes wall muscles
Defecation inhibitedEye
Iris constricts
Adjusts for near visionIris dilates
Adjusts for far visionMale Sex Organs
Promotes erection
Promotes ejaculation
-
Partial Pressures of O2 and CO2 in the body (normal, resting conditions):
- Alveoli
- PO2 = 100 mm Hg
- PCO2 = 40 mm Hg
- Alveolar capillaries
- Entering the alveolar capillaries
- PO2 = 40 mm Hg (relatively low because this blood has just returned from the systemic circulation & has lost much of its oxygen)
- PCO2 = 45 mm Hg (relatively high because the blood returning from the systemic circulation has picked up carbon dioxide)
- Entering the alveolar capillaries
-
While in the alveolar capillaries, the diffusion of gasses occurs: oxygen diffuses from the alveoli into the blood & carbon dioxide from the blood into the alveoli.
- Leaving the alveolar capillaries
- PO2 = 100 mm Hg
- PCO2 = 40 mm Hg
- Blood leaving the alveolar capillaries returns to the left atrium & is pumped by the left ventricle into the systemic circulation. This blood travels through arteries & arterioles and into the systemic, or body, capillaries. As blood travels through arteries & arterioles, no gas exchange occurs.
-
- Entering the systemic capillaries
- PO2 = 100 mm Hg
- PCO2 = 40 mm Hg
- Body cells (resting conditions)
- PO2 = 40 mm Hg
- PCO2 = 45 mm Hg
- Entering the systemic capillaries
- Because of the differences in partial pressures of oxygen & carbon dioxide in the systemic capillaries & the body cells, oxygen diffuses from the blood & into the cells, while carbon dioxide diffuses from the cells into the blood.
-
- Leaving the systemic capillaries
- PO2 = 40 mm Hg
- PCO2 = 45 mm Hg
- Leaving the systemic capillaries
- Blood leaving the systemic capillaries returns to the heart (right atrium) via venules & veins (and no gas exchange occurs while blood is in venules & veins). This blood is then pumped to the lungs (and the alveolar capillaries) by the right ventricle.