Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

 Pain, Temperature, and Crude Touch and Pressure

General somatic nociceptors, thermoreceptors, and mechanoreceptors sensitive to crude touch and pressure from the face conduct signals to the brainstem over GSA fibers of cranial nerves V, VII, IX, and X.

The afferent fibers involved are processes of monopolar neurons with cell bodies in the semilunar, geniculate, petrosal, and nodose ganglia, respectively.

The central processes of these neurons enter the spinal tract of V, where they descend through the brainstem for a short distance before terminating in the spinal nucleus of V.

Second-order neurons then cross over the opposite side of the brainstem at various levels to enter the ventral trigeminothalamic tract, where they ascend to the VPM of the thalamus.

Finally, third-order neurons project to the "face" area of the cerebral cortex in areas 3, 1, and 2 .

Discriminating Touch and Pressure

Signals are conducted from general somatic mechanoreceptors over GSA fibers of the trigeminal nerve into the principal sensory nucleus of V, located in the middle pons.

Second-order neurons then conduct the signals to the opposite side of the brainstem, where they ascend in the medial lemniscus to the VPM of the thalamus.

 Thalamic neurons then project to the "face" region of areas 3, I, and 2 of the cerebral cortex.

 Kinesthesia and Subconscious Proprioception

Proprioceptive input from the face is primarily conducted over GSA fibers of the trigeminal nerve.

The peripheral endings of these neurons are the general somatic mechanoreceptors sensitive to both conscious (kinesthetic) and subconscious proprioceptive input.

Their central processes extend from the mesencephalic nucleus to the principal sensory nucleus of V in the pons

The subconscious component is conducted to the cerebellum, while the conscious component travels to the cerebral cortex.

Certain second-order neurons from the principal sensory nucleus relay proprioceptive information concerning subconscious evaluation and integration into the ipsilateral cerebellum.

Other second-order neurons project to the opposite side of the pons and ascend to the VPM of the thalamus as the dorsal trigeminothalamic tract.

Thalamic projections terminate in the face area of the cerebral cortex.

Cystic Fibrosis
→ Thick mucus coagulates in ducts, produces obstruction, Too thick for cilia to move
 
→ Major Systems Affected: Respiratory System, G. I. Tract,Reproductive Tract

→ Inherited, autosomal recessive gene, most common fatal genetic disorder

→    Major characteristic, Altered electrolyte composition (Saliva & sweat Na+, K+, Cl-)

→    Family history of Cystic Fibrosis
→    Respiratory Infections & G.I.Tract malabsorption
→    Predisposes lung to Secondary infection (Staphylococcus, Pseudomonas)
→    Damages Respiratory Bronchioles and Alveolar ducts, Produces Fibrosis of Lungs, Large cystic dilations)

HEART DISORDERS

  1. Pump failure => Alters pressure (flow) =>alters oxygen carrying capacity.
    1. Renin release (Juxtaglomerular cells) Kidney
    2. Converts Angiotensinogen => Angiotensin I
    3. In lungs Angiotensin I Converted => Angiotensin II
    4. Angiotensin II = powerful vasoconstrictor (raises pressure, increases afterload)
      1. stimulates thirst
      2. stimulates adrenal cortex to release Aldosterone
        (Sodium retention, potassium loss)
      3. stimulates kidney directly to reabsorb Sodium
      4. releases ADH from Posterior Pituitary
  2. Myocardial Infarction

     

    1. Myocardial Cells die from lack of Oxygen
    2. Adjacent vessels (collateral) dilate to compensate
    3. Intracellular Enzymes leak from dying cells (Necrosis)
      1. Creatine Kinase CK (Creatine Phosphokinase) 3 forms
        1. One isoenzyme = exclusively Heart (MB)
        2. CK-MB blood levels found 2-5 hrs, peak in 24 hrs
        3. Lactic Dehydrogenase found 6-10 hours after. points less clearly to infarction
      2. Serum glutamic oxaloacetic transaminase (SGOT)
        1. Found 6 hrs after infarction, peaks 24-48 hrs at 2 to 15 times normal,
        2. SGOT returns to normal after 3-4 days
    4. Myocardium weakens = Decreased CO & SV (severe - death)
    5. Infarct heal by fibrous repair
    6. Hypertrophy of undamaged myocardial cells
      1. Increased contractility to restore normal CO
      2. Improved by exercise program
    7. Prognosis
      1. 10% uncomplicated recovery
      2. 20% Suddenly fatal
      3. Rest MI not fatal immediately, 15% will die from related causes
  3. Congenital heart disease (Affect oxygenation of blood)
    1. Septal defects
    2. Ductus arteriosus
    3. Valvular heart disease
      1. Stenosis = cusps, fibrotic & thickened, Sometimes fused, can not open
      2. Regurgitation = cusps, retracted, Do not close, blood moves backwards

Function of Blood

  • transport through the body of
    • oxygen and carbon dioxide
    • food molecules (glucose, lipids, amino acids)
    • ions (e.g., Na+, Ca2+, HCO3)
    • wastes (e.g., urea)
    • hormones
    • heat
  • defense of the body against infections and other foreign materials. All the WBCs participate in these defenses

 

Regulation of glomerular filtration :

1. Extrinsic regulation : 

- Neural regulation : sympathetic and parasympathetic nervous system which causes vasoconstriction or vasodilation respectively .
- Humoral regulation : Vasoactive substances may affect the GFR , vasoconstrictive substances like endothelin ,Angiotensin II , Norepinephrine , prostaglandine F2 may constrict the afferent arteriole and thus decrease GFR , while the vasodilative agents like dopamine , NO , ANP , Prostaglandines E2 may dilate the afferent arteriole and thus increase the filtration rate .

2. Intrinsic regulation : 

- Myogenic theory ( as in the intrinsic regulation of cardiac output) .
- Tubuloglomerular feedback: occurs by cells of the juxtaglomerular apparatus that is composed of specific cells of the distal tubules when it passes between afferent and efferent arterioles ( macula densa cells ) , these cells sense changes in flow inside the tubules and inform specific cells in the afferent arteriole (granular cells ) , the later secrete vasoactive substances that affect the diameter of the afferent arteriole.

Vital Capacity: The vital capacity (VC) is the maximum volume which can be ventilated in a single breath. VC= IRV+TV+ERV. VC varies with gender, age, and body build. Measuring VC gives a device for diagnosis of respiratory disorder, and a benchmark for judging the effectiveness of treatment. (4600 ml)

Vital Capacity is reduced in restrictive disorders, but not in disorders which are purely obstructive.

The FEV1 is the % of the vital capacity which is expelled in the first second. It should be at least 75%. The FEV1 is reduced in obstructive disorders.

Both VC and the FEV1 are reduced in disorders which are both restrictive and obstructive

Oxygen is present at nearly 21% of ambient air. Multiplying .21 times 760 mmHg (standard pressure at sea level) yields a pO2 of about 160. Carbon dioxide is .04% of air and its partial pressure, pCO2, is .3.

With alveolar air having a pO2 of 104 and a pCO2 of 40. So oxygen diffuses into the alveoli from inspired air and carbon dioxide diffuses from the alveoli into air which will be expired. This causes the levels of oxygen and carbon dioxide to be intermediate in expired air when compared to inspired air and alveolar air. Some oxygen has been lost to the alveolus, lowering its level to 120, carbon dioxide has been gained from the alveolus raising its level to 27.

Likewise a concentration gradient causes oxygen to diffuse into the blood from the alveoli and carbon dioxide to leave the blood. This produces the levels seen in oxygenated blood in the body. When this blood reaches the systemic tissues the reverse process occurs restoring levels seen in deoxygenated blood.

The pituitary gland is pea-sized structure located at the base of the brain. In humans, it consists of two lobes:

  • the Anterior Lobe and
  • the Posterior Lobe

The Anterior Lobe

The anterior lobe contains six types of secretory cells All of them secrete their hormone in response to hormones reaching them from the hypothalamus of the brain.

Thyroid Stimulating Hormone (TSH)

TSH (also known as thyrotropin) is a glycoprotein The secretion of TSH is

  • stimulated by the arrival of thyrotropin releasing hormone (TRH) from the hypothalamus.
  • inhibited by the arrival of somatostatin from the hypothalamus.

 TSH stimulates the thyroid gland to secrete its hormone thyroxine (T4).

Some develop antibodies against their own TSH receptors making more T4 causing hyperthyroidism. The condition is called thyrotoxicosis or Graves' disease.

Hormone deficiencies

A deficiency of TSH causes hypothyroidism: inadequate levels of T4 (and thus of T3 )..

Follicle-Stimulating Hormone (FSH)

FSH is a heterodimeric glycoprotein Synthesis and release of FSH is triggered by the arrival from the hypothalamus of gonadotropin-releasing hormone (GnRH).

FSH in females :In sexually-mature females, FSH (assisted by LH) acts on the follicle to stimulate it to release estrogens.

FSH in males :In mature males, FSH acts on spermatogonia stimulating (with the aid of testosterone) the production of sperm.

Luteinizing Hormone (LH)

LH is synthesized within the same pituitary cells as FSH and under the same stimulus (GnRH). It is also a heterodimeric glycoprotein

LH in females

In sexually-mature females, LH

  • stimulates the follicle to secrete estrogen in the first half of the menstrual cycle
  • a surge of LH triggers the completion of meiosis I of the egg and its release (ovulation) in the middle of the cycle
  • stimulates the now-empty follicle to develop into the corpus luteum, which secretes progesterone during the latter half of the menstrual cycle.

LH in males

LH acts on the interstitial cells (also known as Leydig cells) of the testes stimulating them to synthesize and secrete the male sex hormone, testosterone.

LH in males is also known as interstitial cell stimulating hormone (ICSH).

Prolactin (PRL)

Prolactin is a protein of 198 amino acids. During pregnancy it helps in the preparation of the breasts for future milk production. After birth, prolactin promotes the synthesis of milk.

Prolactin secretion is

  • stimulated by TRH
  • repressed by estrogens and dopamine.

Growth Hormone (GH)

  • Human growth hormone (also called somatotropin) is a protein
  • The GH-secreting cells are stimulated to synthesize and release GH by the intermittent arrival of growth hormone releasing hormone (GHRH) from the hypothalamus. GH promotes body growth

In Child

  • hyposecretion of GH produces dwarfism
  • hypersecretion leads to gigantism

In adults, a hypersecretion of GH leads to acromegaly.

ACTH — the adrenocorticotropic hormone

ACTH acts on the cells of the adrenal cortex, stimulating them to produce

  • glucocorticoids, like cortisol
  • mineralocorticoids, like aldosterone
  • androgens (male sex hormones, like testosterone

Hypersecretion of ACTH cause of Cushing's disease.

Explore by Exams