Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

1.Rhythmicity ( Chronotropism ) :  means the ability of heart to beat regularly ( due to repetitive and stable depolarization and repolarization )  . Rhythmicity of heart is a myogenic in origin , because cardiac muscles are automatically excited muscles and does not depend on the nervous stimulus to initiate excitation and then contraction . The role of nerves is limited to the regulation of the heart rate and not to initiate the beat.

There are many evidences that approve the myogenic and not neurogenic origin of the rhythmicity of cardiac muscle . For example :
-  transplanted heart continues to beat regularly without any nerve supply.
-  Embryologically the heart starts to beat before reaching any nerves to them.
-  Some drugs that paralyze the nerves ( such as cocaine ) do not stop the heart in given doses.

Spontaneous rhythmicity of the cardiac muscle due to the existence of excitatory - conductive system , which is composed of self- exciting non-contractile cardiac muscle cells . The SA node of the mentioned system excites in a rate , that is the most rapid among the other components of the system ( 110 beats /minute ) , which makes it the controller or ( the pacemaker ) of the cardiac rhythm of the entire heart.

Mechanism , responsible for self- excitation in the SA node and the excitatory conductive system  is due to the following properties of the cell membrane of theses cells :
1- Non-gated sodium channels
2- Decreased permeability to potassium
3- existence of slow and fast calcium channels.

These properties enable the cations ( sodium through the none-gated sodium voltage channels , calcium through calcium slow channels) to enter the cell and depolarize the cell membrane without need for external stimulus.

The resting membrane potential of non-contractile cardiac cell is -55 - -60 millivolts ( less than that of excitable nerve cells (-70) ) . 

The threshold is also less negative than that of nerve cells ( -40 millivolts ).

The decreased permeability to potassium from its side decrease the eflux  of potassium during the repolarization phase of the pacemaker potential . All of these factors give the pacemaker potential its characteristic shape

Repeating of the pacemaker potential between the action potentials of contractile muscle cells is the cause of spontaneous rhythmicity of cardiac muscle cells.

Factors , affecting the rhythmicity of the cardiac muscle :


I. Factors that increase the rate ( positive chronotropic factors) :
1. sympathetic stimulation : as its neurotransmitter norepinephrine increases the membrane permeability to sodium and calcium.
2. moderate warming : moderate warming increases temperature by 10 beats for each 1 Fahrenheit degree increase in body temperature, this due to decrease in permeability to potassium ions in pacemaker membrane by moderate increase in temperature.
3. Catecholaminic drugs have positive chronotropic effect.
4. Thyroid hormones : have positive chronotropic effect , due to the fact that these drugs increase the sensitivity of adrenergic receptors to adrenaline and noreadrenaline .
5. mild hypoxia.
6. mild alkalemia : mild alkalemia decreases the negativity of the resting potential.
7. hypocalcemia.
8. mild hypokalemia


II. Factors that decrease rhythmicity ( negative chronotropic):


1.Vagal stimulation : the basal level of vagal stimulation inhibits the sinus rhythm and decrease it from 110-75 beats/ minute. This effect due to increasing the permeability of the cardiac muscle cell to potassium , which causes rapid potassium eflux , which increases the negativity inside the cardiac cells (hyperpolarization ).
2. moderate cooling
3. severe warming : due to cardiac damage , as a result of intercellular protein denaturation. Excessive cooling on the other hand decrease metabolism and stops rhythmicity.
4. Cholenergic drugs ( such as methacholine , pilocarpine..etc) have negative chronotropic effect.
5. Digitalis : these drugs causes hyperpolarization . This effect is similar to that of vagal stimulation.
6. Hypercapnia ( excessive CO2 production )
7. Acidemia.
8. hyper- and hyponatremia .
9. hyperkalemia
10. hypercalcemia
11. Typhoid or diphteria toxins.

Regulation of glomerular filtration :

1. Extrinsic regulation : 

- Neural regulation : sympathetic and parasympathetic nervous system which causes vasoconstriction or vasodilation respectively .
- Humoral regulation : Vasoactive substances may affect the GFR , vasoconstrictive substances like endothelin ,Angiotensin II , Norepinephrine , prostaglandine F2 may constrict the afferent arteriole and thus decrease GFR , while the vasodilative agents like dopamine , NO , ANP , Prostaglandines E2 may dilate the afferent arteriole and thus increase the filtration rate .

2. Intrinsic regulation : 

- Myogenic theory ( as in the intrinsic regulation of cardiac output) .
- Tubuloglomerular feedback: occurs by cells of the juxtaglomerular apparatus that is composed of specific cells of the distal tubules when it passes between afferent and efferent arterioles ( macula densa cells ) , these cells sense changes in flow inside the tubules and inform specific cells in the afferent arteriole (granular cells ) , the later secrete vasoactive substances that affect the diameter of the afferent arteriole.

The large intestine (colon)

The large intestine receives the liquid residue after digestion and absorption are complete. This residue consists mostly of water as well as materials (e.g. cellulose) that were not digested. It nourishes a large population of bacteria (the contents of the small intestine are normally sterile). Most of these bacteria (of which one common species is E. coli) are harmless. And some are actually helpful, for example, by synthesizing vitamin K. Bacteria flourish to such an extent that as much as 50% of the dry weight of the feces may consist of bacterial cells. Reabsorption of water is the chief function of the large intestine. The large amounts of water secreted into the stomach and small intestine by the various digestive glands must be reclaimed to avoid dehydration.

Cells, cytoplasm, and organelles:

  • Cytoplasm consists of a gelatinous solution and contains microtubules (which serve as a cell's cytoskeleton) and organelles
  • Cells also contain a nucleus within which is found DNA (deoxyribonucleic acid) in the form of chromosomes plus nucleoli (within which ribosomes are formed)
  • Organelles include:
  1. Endoplasmic reticulum : 2 forms: smooth and rough; the surface of rough ER is coated with ribosomes; the surface of smooth ER is not , Functions include: mechanical support, synthesis (especially proteins by rough ER), and transport
  2. Golgi complex consists of a series of flattened sacs (or cisternae) functions include: synthesis (of substances likes phospholipids), packaging of materials for transport (in vesicles), and production of lysosomes
  3. Lysosome : membrane-enclosed spheres that contain powerful digestive enzymes , functions include destruction of damaged cells & digestion of phagocytosed materials
  4.  Mitochondria : have double-membrane: outer membrane & highly convoluted inner membrane
    1. inner membrane has folds or shelf-like structures called cristae that contain elementary particles; these particles contain enzymes important in ATP production
    2. primary function is production of adenosine triphosphate (ATP)
  5. Ribosome-:composed of rRNA (ribosomal RNA) & protein , primary function is to produce proteins
  6. Centrioles :paired cylindrical structures located near the nucleas , play an important role in cell division
  7. Flagella & cilia - hair-like projections from some human cells
    1. cilia are relatively short & numerous (e.g., those lining trachea)
    2. a flagellum is relatively long and there's typically just one (e.g., sperm)
    • Villi  Projections of cell membrane that serve to increase surface area of a cell (which is important, for example, for cells that line the intestine)

Bile contains:

  • bile acids. These amphiphilic steroids emulsify ingested fat. The hydrophobic portion of the steroid dissolves in the fat while the negatively-charged side chain interacts with water molecules. The mutual repulsion of these negatively-charged droplets keeps them from coalescing. Thus large globules of fat (liquid at body temperature) are emulsified into tiny droplets (about 1 µm in diameter) that can be more easily digested and absorbed.

 

  • bile pigments. These are the products of the breakdown of hemoglobin removed by the liver from old red blood cells. The brownish color of the bile pigments imparts the characteristic brown color of the feces.

The Cardiac Cycle: the sequence of events in one heartbeat.

systole - the contraction phase; unless otherwise specified refers to left ventricle, but each chamber has its own systole.

diastole - the relaxation phase; unless otherwise specified refers to left ventricle, but each chamber has its own diastole.

1) quiescent period - period when all chambers are at rest and filling. 70% of ventricular filling occurs during this period. The AV valves are open, the semilunar valves are closed.

2) atrial systole - pushes the last 30% of blood into the ventricle.

3) atrial diastole - atria begin filling.

4) ventricular systole - First the AV valves close causing the first heart sound, then after the isovolumetric contraction phase the semilunar valves open permitting ventricular ejection of blood into the arteries.

5) ventricular diastole - As the ventricles relax the semilunar valves close first producing the second heart sound, then after the isovolumetric relaxation phase the AV valves open allowing ventricular filling.

Neurophysiology

Transmission of an action potential. This occurs in two ways:

1) across the synapse - synaptic transmission. This is a chemical process, the result of a chemical neurotransmitter.

2) along the axon - membrane transmission. This is the propagation of the action potential itself along the membrane of the axon.

Synaptic transmission - What you learned about the neuromuscular junction is mostly applicable here as well. The major differences in our current discussion are:

1) Transmission across the synapse does not necessarily result in an action potential. Instead, small local potentials are produced which must add together in summation to produce an action potential.

2) Although ACh is a common neurotransmitter, there are many others and the exact effect at the synapse depends on the neurotransmitter involved.

3) Neurotransmitters can be excitatory or inhibitory. The result might be to turn off the next neuron rather than to produce an action potential

The basic steps of synaptic transmission are the same as described at the neuromuscular junction

1) Impulse arrives at the axon terminus causing opening of Ca2+ channels and allows Ca2+  to enter the axon. The calcium ions are in the extracellular fluid, pumped there much like sodium is pumped. Calcium is just an intermediate in both neuromuscular and synaptic transmission.

2) Ca2+  causes vesicles containing neurotransmitter to release the chemical into the synapse by exocytosis across the pre-synaptic membrane.

3) The neurotransmitter binds to the post-synaptic receptors. These receptors are linked to chemically gated ion channels and these channels may open or close as a result of binding to the receptors to cause a graded potential which can be either depolarization, or hyperpolarization depending on the transmitter. Depolarization results from opening of Na+ gates and is called an EPSP. Hyperpolarization could result from opening of K+ gates and is called IPSP. 

4) Graded potentials spread and overlap and can summate to produce a threshold depolarization and an action potential when they stimulate voltage gated ion channels in the neuron's trigger region.

5) The neurotransmitter is broken down or removed from the synapse in order for the receptors to receive the next stimulus. As we learned there are enzymes for some neurotransmitters such as the Ach-E which breaks down acetylcholine. Monoamine oxidase (MAO) is an enzyme which breaks down the catecholamines (epinephrine, nor-epinephrine, dopamine) and nor-epinephrine (which is an important autonomic neurotransmitter) is removed by the axon as well in a process known as reuptake. Other transmitters may just diffuse away.

Graded Potentials - these are small, local depolarizations or hyperpolarizations which can spread and summate to produce a threshold depolarization. Small because they are less than that needed for threshold in the case of the depolarizing variety. Local means they only spread a few mm on the membrane and decline in intensity with increased distance from the point of the stimulus. The depolarizations are called EPSPs, excitatory post-synaptic potentials, because they tend to lead to an action potential which excites or turns the post-synaptic neuron on. Hyperpolarizations are called IPSPs, inhibitory post-synaptic potentials, because they tend to inhibit an action potential and thus turn the neuron off.

Summation - the EPSPs and IPSPs will add together to produce a net depolarization (or hyperpolarization).

Temporal summation- this is analogous to the frequency (wave, tetany) summation discussed for muscle. Many EPSPs occurring in a short period of time (e.g. with high frequency) can summate to produce threshold depolarization. This occurs when high intensity stimulus results in a high frequency of EPSPs.

Spatial summation - this is analogous to quantal summation in a muscle. It means that there are many stimuli occurring simultaneously. Their depolarizations spread and overlap and can build on one another to sum and produce threshold depolarization.

Inhibition - When the brain causes an IPSP in advance of a reflex pathway being stimulated, it reduces the likelihood of the reflex occurring by increasing the depolarization required. The pathway can still work, but only with more than the usual number or degree of stimulation. We inhibit reflexes when allowing ourselves to be given an injection or blood test for instance.

Facilitation - When the brain causes an EPSP in advance of a reflex pathway being stimulated, it makes the reflex more likely to occur, requiring less additional stimulation. When we anticipate a stimulus we often facilitate the reflex.

Learned Reflexes - Many athletic and other routine activities involve learned reflexes. These are reflex pathways facilitated by the brain. We learn the pathways by performing them over and over again and they become facilitated. This is how we can perfect our athletic performance, but only if we learn and practice them correctly. It is difficult to "unlearn" improper techniques once they are established reflexes. Like "riding a bike" they may stay with you for your entire life!

Post-tetanic potentiation - This occurs when we perform a rote task or other repetitive action. At first we may be clumsy at it, but after continuous use (post-tetanic) we become more efficient at it (potentiation). These actions may eventually become learned reflexes

The Action Potential

The trigger region of a neuron is the region where the voltage gated channels begin. When summation results in threshold depolarization in the trigger region of a neuron, an action potential is produced. There are both sodium and potassium channels. Each sodium channel has an activation gate and an inactivation gate, while potassium channels have only one gate. 

A) At the resting state the sodium activation gates are closed, sodium inactivation gates are open, and potassium gates are closed. Resting membrane potential is at around -70 mv inside the cell. 

B) Depolarizing phase: The action potential begins with the activation gates of the sodium channels opening, allowing Na+ ions to enter the cell and causing a sudden depolarization which leads to the spike of the action potential. Excess Na+ ions enter the cell causing reversal of potential becoming briefly more positive on the inside of the cell membrane.

C) Repolarizing phase: The sodium inactivation gates close and potassium gates open. This causes Na+ ions to stop entering the cell and  K+ ions  to leave the cell, causing repolarization. Until the membrane is repolarized it cannot be stimulated, called the absolute refractory period.

D) Excess potassium leaves the cell causing a brief hyperpolarization. Sodium activation gates close and potassium gates begin closing. The sodium-potassium pump begins to re-establish the resting membrane potential. During hyperpolarization the membrane can be stimulated but only with a greater than normal depolarization, the relative refractory period.

Action potentials are self-propagated, and once started the action potential progresses along the axon membrane. It is all-or-none, that is there are not different degrees of action potentials. You either have one or you don't.

Explore by Exams