NEET MDS Lessons
Physiology
The Adrenal Glands
The adrenal glands are two small structures situated one at top each kidney. Both in anatomy and in function, they consist of two distinct regions:
- an outer layer, the adrenal cortex, which surrounds
- the adrenal medulla.
The Adrenal Cortex
cells of the adrenal cortex secrete a variety of steroid hormones.
- glucocorticoids (e.g., cortisol)
- mineralocorticoids (e.g., aldosterone)
- androgens (e.g., testosterone)
- Production of all three classes is triggered by the secretion of ACTH from the anterior lobe of the pituitary.
Glucocorticoids
They Effect by raising the level of blood sugar (glucose). One way they do this is by stimulating gluconeogenesis in the liver: the conversion of fat and protein into intermediate metabolites that are ultimately converted into glucose.
The most abundant glucocorticoid is cortisol (also called hydrocortisone).
Cortisol and the other glucocorticoids also have a potent anti-inflammatory effect on the body. They depress the immune response, especially cell-mediated immune responses.
Mineralocorticoids
The most important of them is the steroid aldosterone. Aldosterone acts on the kidney promoting the reabsorption of sodium ions (Na+) into the blood. Water follows the salt and this helps maintain normal blood pressure.
Aldosterone also
- acts on sweat glands to reduce the loss of sodium in perspiration;
- acts on taste cells to increase the sensitivity of the taste buds to sources of sodium.
The secretion of aldosterone is stimulated by:
- a drop in the level of sodium ions in the blood;
- a rise in the level of potassium ions in the blood;
- angiotensin II
- ACTH (as is that of cortisol)
Androgens
The adrenal cortex secretes precursors to androgens such as testosterone.
Excessive production of adrenal androgens can cause premature puberty in young boys.
In females, the adrenal cortex is a major source of androgens. Their hypersecretion may produce a masculine pattern of body hair and cessation of menstruation.
Addison's Disease: Hyposecretion of the adrenal cortices
Addison's disease has many causes, such as
- destruction of the adrenal glands by infection;
- their destruction by an autoimmune attack;
- an inherited mutation in the ACTH receptor on adrenal cells.
Cushing's Syndrome: Excessive levels of glucocorticoids
In Cushing's syndrome, the level of adrenal hormones, especially of the glucocorticoids, is too high.It can be caused by:
- excessive production of ACTH by the anterior lobe of the pituitary;
- excessive production of adrenal hormones themselves (e.g., because of a tumor), or (quite commonly)
- as a result of glucocorticoid therapy for some other disorder such as
- rheumatoid arthritis or
- preventing the rejection of an organ transplant.
The Adrenal Medulla
The adrenal medulla consists of masses of neurons that are part of the sympathetic branch of the autonomic nervous system. Instead of releasing their neurotransmitters at a synapse, these neurons release them into the blood. Thus, although part of the nervous system, the adrenal medulla functions as an endocrine gland.The adrenal medulla releases:
- adrenaline (also called epinephrine) and
- noradrenaline (also called norepinephrine)
Both are derived from the amino acid tyrosine.
Release of adrenaline and noradrenaline is triggered by nervous stimulation in response to physical or mental stress. The hormones bind to adrenergic receptors transmembrane proteins in the plasma membrane of many cell types.
Some of the effects are:
- increase in the rate and strength of the heartbeat resulting in increased blood pressure;
- blood shunted from the skin and viscera to the skeletal muscles, coronary arteries, liver, and brain;
- rise in blood sugar;
- increased metabolic rate;
- bronchi dilate;
- pupils dilate;
- hair stands on end (gooseflesh in humans);
- clotting time of the blood is reduced;
- increased ACTH secretion from the anterior lobe of the pituitary.
All of these effects prepare the body to take immediate and vigorous action.
Serum Lipids
LIPID |
Typical values (mg/dl) |
Desirable (mg/dl) |
Cholesterol (total) |
170–210 |
<200 |
LDL cholesterol |
60–140 |
<100 |
HDL cholesterol |
35–85 |
>40 |
Triglycerides |
40–160 |
<160 |
- Total cholesterol is the sum of
- HDL cholesterol
- LDL cholesterol and
- 20% of the triglyceride value
- Note that
- high LDL values are bad, but
- high HDL values are good.
- Using the various values, one can calculate a
cardiac risk ratio = total cholesterol divided by HDL cholesterol - A cardiac risk ratio greater than 7 is considered a warning.
Reflexes
A reflex is a direct connection between stimulus and response, which does not require conscious thought. There are voluntary and involuntary reflexes.
The Stretch Reflex:
The stretch reflex in its simplest form involves only 2 neurons, and is therefore sometimes called a 2-neuron reflex. The two neurons are a sensory and a motor neuron. The sensory neuron is stimulated by stretch (extension) of a muscle. Stretch of a muscle normally happens when its antagonist contracts, or artificially when its tendon is stretched, as in the knee jerk reflex. Muscles contain receptors called muscle spindles. These receptors respond to the muscles's stretch. They send stimuli back to the spinal cord through a sensory neuron which connects directly to a motor neuron serving the same muscle. This causes the muscle to contract, reversing the stretch. The stretch reflex is important in helping to coordinate normal movements in which antagonistic muscles are contracted and relaxed in sequence, and in keeping the muscle from overstretching.
Since at the time of the muscle stretch its antagonist was contracting, in order to avoid damage it must be inhibited or tuned off in the reflex. So an additional connection through an interneuron sends an inhibitory pathway to the antagonist of the stretched muscle - this is called reciprocal inhibition.
The Deep Tendon Reflex:
Tendon receptors respond to the contraction of a muscle. Their function, like that of stretch reflexes, is the coordination of muscles and body movements. The deep tendon reflex involves sensory neurons, interneurons, and motor neurons. The response reverses the original stimulus therefore causing relaxation of the muscle stimulated. In order to facilitate that the reflex sends excitatory stimuli to the antagonists causing them to contract - reciprocal activation.
The stretch and tendon reflexes complement one another. When one muscle is stretching and stimulating the stretch reflex, its antagonist is contracting and stimulating the tendon reflex. The two reflexes cause the same responses thus enhancing one another.
The Crossed Extensor Reflex -
The crossed extensor reflex is just a withdrawal reflex on one side with the addition of inhibitory pathways needed to maintain balance and coordination. For example, you step on a nail with your right foot as you are walking along. This will initiate a withdrawal of your right leg. Since your quadriceps muscles, the extensors, were contracting to place your foot forward, they will now be inhibited and the flexors, the hamstrings will now be excited on your right leg. But in order to maintain your balance and not fall down your left leg, which was flexing, will now be extended to plant your left foot (e.g. crossed extensor). So on the left leg the flexor muscles which were contracting will be inhibited, and the extensor muscles will be excited
Phases of cardiac cycle :
1. Early diastole ( also called the atrial diastole , or complete heart diastole) : During this phase :
- Atria are relaxed
- Ventricles are relaxed
- Semilunar valves are closed
- Atrioventricular valves are open
During this phase the blood moves passively from the venous system into the ventricles ( about 80 % of blood fills the ventricles during this phase.
2. Atrial systole : During this phase :
- Atria are contracting
- Ventricles are relaxed
- AV valves are open
- Semilunar valves are closed
- Atrial pressure increases.the a wave of atrial pressure appears here.
- P wave of ECG starts here
- intraventricular pressure increases due to the rush of blood then decrease due to continuous relaxation of ventricles.
The remaining 20% of blood is moved to fill the ventricles during this phase , due to atrial contraction.
3. Isovolumetric contraction : During this phase :
- Atria are relaxed
- Ventricles are contracting
- AV valves are closed
- Semilunar valves are closed
- First heart sound
- QRS complex.
The ventricular fibers start to contract during this phase , and the intraventricular pressure increases. This result in closing the AV valves , but the pressure is not yet enough to open the semilunar valves , so the blood volume remain unchanged , and the muscle fibers length also remain unchanged , so we call this phase as isovolumetric contraction ( iso : the same , volu= volume , metric= length).
4. Ejection phase : Blood is ejected from the ventricles into the aorta and pulmonary artery .
During this phase :
- Ventricles are contracting
- Atria are relaxed
- AV valves are closed
- Semilunar valves are open
- First heart sound
- Intraventricular pressure is increased , due to continuous contraction
- increased aortic pressure .
- T wave starts.
5. Isovolumetric relaxation: This phase due to backflow of blood in aorta and pulmonary system after the ventricular contraction is up and the ventricles relax . This backflow closes the semilunar valves .
During this phase :
- Ventricles are relaxed
- Atrial are relaxed
- Semilunar valves are closed .
- AV valves are closed.
- Ventricular pressure fails rapidly
- Atrial pressure increases due to to continuous venous return. the v wave appears here.
- Aortic pressure : initial sharp decrease due to sudden closure of the semilunar valve ( diacrotic notch) , followed by secondary rise in pressure , due to elastic recoil of the aorta ( diacrotic wave) .
- T wave ends in this phase
Exchange of gases:
- External respiration:
- exchange of O2 & CO2 between external environment & the cells of the body
- efficient because alveoli and capillaries have very thin walls & are very abundant (your lungs have about 300 million alveoli with a total surface area of about 75 square meters)
- Internal respiration - intracellular use of O2 to make ATP
- occurs by simple diffusion along partial pressure gradients
The large intestine (colon)
The large intestine receives the liquid residue after digestion and absorption are complete. This residue consists mostly of water as well as materials (e.g. cellulose) that were not digested. It nourishes a large population of bacteria (the contents of the small intestine are normally sterile). Most of these bacteria (of which one common species is E. coli) are harmless. And some are actually helpful, for example, by synthesizing vitamin K. Bacteria flourish to such an extent that as much as 50% of the dry weight of the feces may consist of bacterial cells. Reabsorption of water is the chief function of the large intestine. The large amounts of water secreted into the stomach and small intestine by the various digestive glands must be reclaimed to avoid dehydration.
Red blood cell cycle:
RBCs enter the blood at a rate of about 2 million cells per second. The stimulus for erythropoiesis is the hormone erythropoietin, secreted mostly by the kidney. RBCs require Vitamin B12, folic acid, and iron. The lifespan of RBC averages 120 days. Aged and damaged red cells are disposed of in the spleen and liver by macrophages. The globin is digested and the amino acids released into the blood for protein manufacture; the heme is toxic and cannot be reused, so it is made into bilirubin and removed from the blood by the liver to be excreted in the bile. The red bile pigment bilirubin oxidizes into the green pigment biliverdin and together they give bile and feces their characteristic color. Iron is picked up by a globulin protein (apotransferrin) to be transported as transferrin and then stored, mostly in the liver, as hemosiderin or ferritin. Ferritin is short term iron storage in constant equilibrium with plasma iron carried by transferrin. Hemosiderin is long term iron storage, forming dense granules visible in liver and other cells which are difficult for the body to mobilize.
Some iron is lost from the blood due to hemorrhage, menstruation, etc. and must be replaced from the diet. On average men need to replace about 1 mg of iron per day, women need 2 mg. Apotransferrin (transferrin without the iron) is present in GI lining cells and is also released in the bile. It picks up iron from the GI tract and stimulates receptors on the lining cells which absorb it by pinocytosis. Once through the mucosal cell iron is carried in blood as transferrin to the liver and marrow. Iron leaves the transferrin molecule to bind to ferritin in these tissues. Most excess iron will not be absorbed due to saturation of ferritin, reduction of apotransferrin, and an inhibitory process in the lining tissue.
Erythropoietin Mechanism:
Myeloid (blood producing) tissue is found in the red bone marrow located in the spongy bone. As a person ages much of this marrow becomes fatty and ceases production. But it retains stem cells and can be called on to regenerate and produce blood cells later in an emergency. RBCs enter the blood at a rate of about 2 million cells per second. The stimulus for erythropoiesis is the hormone erythropoietin, secreted mostly by the kidney. This hormone triggers more of the pleuripotential stem cells (hemocytoblasts) to follow the pathway to red blood cells and to divide more rapidly.
It takes from 3 to 5 days for development of a reticulocyte from a hemocytoblast. Reticulocytes, immature rbc, move into the circulation and develop over a 1 to 2 day period into mature erythrocytes. About 1 to 2 % of rbc in the circulation are reticulocytes, and the exact percentage is a measure of the rate of erythropoiesis.