Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

  • it's the individual pressure exerted independently by a particular gas within a mixture of gasses. The air we breath is a mixture of gasses: primarily nitrogen, oxygen, & carbon dioxide. So, the air you blow into a balloon creates pressure that causes the balloon to expand (& this pressure is generated as all the molecules of nitrogen, oxygen, & carbon dioxide move about & collide with the walls of the balloon). However, the total pressure generated by the air is due in part to nitrogen, in part to oxygen, & in part to carbon dioxide. That part of the total pressure generated by oxygen is the 'partial pressure' of oxygen, while that generated by carbon dioxide is the 'partial pressure' of carbon dioxide. A gas's partial pressure, therefore, is a measure of how much of that gas is present (e.g., in the blood or alveoli). 
     
  • the partial pressure exerted by each gas in a mixture equals the total pressure times the fractional composition of the gas in the mixture. So, given that total atmospheric pressure (at sea level) is about 760 mm Hg and, further, that air is about 21% oxygen, then the partial pressure of oxygen in the air is 0.21 times 760 mm Hg or 160 mm Hg.

Phases of cardiac cycle :

1. Early diastole ( also called the atrial diastole , or complete heart diastole) : During this phase :

- Atria are  relaxed
- Ventricles are relaxed
- Semilunar valves are closed
- Atrioventricular valves are open
During this phase the blood moves passively from the venous system into the ventricles ( about 80 % of blood fills the ventricles during this phase.

2. Atrial systole : During this phase :

- Atria are contracting
- Ventricles are relaxed
- AV valves are open
- Semilunar valves are closed
- Atrial pressure increases.the a wave of atrial pressure appears here.
- P wave of ECG starts here
- intraventricular pressure increases due to the rush of blood then decrease due to continuous relaxation of ventricles.

The remaining 20% of blood is moved to fill the ventricles during this phase , due to atrial contraction.

3. Isovolumetric contraction : During this phase :

- Atria are relaxed
- Ventricles are contracting
- AV valves are closed
- Semilunar valves are closed
- First heart sound
- QRS complex.
The ventricular fibers start to contract during this phase , and the intraventricular pressure increases. This result in closing the AV valves , but the pressure is not yet enough to open the semilunar valves , so the blood volume remain unchanged , and the muscle fibers length also remain unchanged , so we call this phase as isovolumetric contraction ( iso : the same , volu= volume , metric= length).

4. Ejection phase : Blood is ejected from the ventricles into the aorta and pulmonary artery .

During this phase :

- Ventricles are contracting
- Atria are relaxed
- AV valves are closed
- Semilunar valves are open
- First heart sound
- Intraventricular pressure is increased , due to continuous contraction
- increased aortic pressure .
- T wave starts.

5. Isovolumetric relaxation:  This phase due to backflow of blood in aorta and pulmonary system after the ventricular contraction is up and the ventricles relax . This backflow closes the semilunar valves .

During this phase :

- Ventricles are relaxed
- Atrial are relaxed
- Semilunar valves are closed .
- AV valves are closed.
- Ventricular pressure fails rapidly
- Atrial pressure increases due to to continuous venous return. the v wave appears here. 
- Aortic pressure : initial sharp decrease due to sudden closure of the semilunar valve ( diacrotic notch) , followed by secondary rise in pressure , due to elastic recoil of the aorta ( diacrotic wave)  .
- T wave ends in this phase

Biological Functions are Extremely Sensitive to pH

  • H+ and OH- ions get special attention because they are very reactive
  • Substance which donates H+ ions to solution = acid
  • Substance which donates OH- ions to solution = base
  • Because we deal with H ions over a very wide range of concentration, physiologists have devised a logarithmic unit, pH, to deal with it
    • pH = - log [H+]
    • [H+] is the H ion concentration in moles/liter
    • Because of the way it is defined a high pH indicates low H ion and a low pH indicates high H ion- it takes a while to get used to the strange definition
    • Also because of the way it is defined, a change of 1 pH unit means a 10X change in the concentration of H ions
      • If pH changes by 2 units the H+ concentration changes by 10 X 10 = 100 times
  • Human blood pH is 7.4
    • Blood pH above 7.4 = alkalosis
    • Blood pH below 7.4 = acidosis
  • Body must get rid of ~15 moles of potential acid/day (mostly CO2)
    • CO2 reacts with water to form carbonic acid (H2CO3)
    • Done mostly by lungs & kidney
  • In neutralization H+ and OH- react to form water
  • If the pH changes charges on molecules also change, especially charges on proteins
    • This changes the reactivity of proteins such as enzymes
  • Large pH changes occur as food passes through the intestines.

Gonadotropin-releasing hormone (GnRH)

GnRH is a peptide of 10 amino acids. Its secretion at the onset of puberty triggers sexual development.

 

Primary Effects

FSH and LH Relaese

 

Secondary Effects

 

Increases estrogen and progesterone (in females)

testosterone Relaese (in males)

Growth hormone-releasing hormone (GHRH)

GHRH is a mixture of two peptides, one containing 40 amino acids, the other 44.  GHRH stimulates cells in the anterior lobe of the pituitary to secrete growth hormone (GH).

Corticotropin-releasing hormone (CRH)

CRH is a peptide of 41 amino acids. Its acts on cells in the anterior lobe of the pituitary to release adrenocorticotropic hormone (ACTH) CRH is also synthesized by the placenta and seems to determine the duration of pregnancy.  It may also play a role in keeping the T cells of the mother from mounting an immune attack against the fetus

Somatostatin

Somatostatin is a mixture of two peptides, one of 14 amino acids, the other of 28. Somatostatin acts on the anterior lobe of the pituitary to

  • inhibit the release of growth hormone (GH)
  • inhibit the release of thyroid-stimulating hormone (TSH)

Somatostatin is also secreted by cells in the pancreas and in the intestine where it inhibits the secretion of a variety of other hormones.

Antidiuretic hormone (ADH) and Oxytocin

These peptides are released from the posterior lobe of the pituitary

1) Storage - the stomach allows a meal to be consumed and the materials released incrementally into the duodenum for digestion. It may take up to four hours for food from a complete meal to clear the stomach. 
2) Chemical digestion - pepsin begins the process of protein digestion cleaving large polypeptides into shorter chains . 
3) Mechanical digestion - the churning action of the muscularis causes liquefaction and mixing of the contents to produce acid chyme. 
4) Some absorption - water, electrolytes, monosaccharides, and fat soluble molecules including alcohol are all absorbed in the stomach to some degree.

Cardiac Control: The Cardiac Center in the medulla.

Outputs:

The cardioacceleratory center sends impulses through the sympathetic nervous system in the cardiac nerves. These fibers innervate the SA node and AV node and the ventricular myocardium. Effects on the SA and AV nodes are an increase in depolarization rate by reducing the resting membrane polarization. Effect on the myocardium is to increase contractility thus increasing force and therefore volume of contraction. Sympathetic stimulation increases both rate and volume of the heart.

The cardioinhibitory center sends impulses through the parasympathetic division, the vagus nerve, to the SA and AV nodes, but only sparingly to the atrial myocardium, and not at all to ventricular myocardium. Its effect is to slow the rate of depolarization by increasing the resting potential, i.e. hyperpolarization.

The parasympathetic division controls the heart at rest, keeping its rhythm slow and regular. This is referred to as normal vagal tone. Parasympathetic effects are inhibited and the sympathetic division exerts its effects during stress, i.e. exercise, emotions, "fight or flight" response, and temperature.

Inputs to the Cardiac Center:

Baroreceptors in the aortic and carotid sinuses. The baroreceptor reflex is responsible for the moment to moment maintenance of normal blood pressure.

Higher brain (hypothalamus): stimulates the center in response to exercise, emotions, "fight or flight", temperature.

Intrinsic Controls of the Heart:

Right Heart Reflex - Pressoreceptors (stretch receptors) in the right atrium respond to stretch due to increased venous return. The reflex acts through a short neural circuit to stimulate the sympathetic nervous system resulting in increased rate and force of contraction. This regulates output to input

The Frank-Starling Law - (Starling's Law of the Heart) - Like skeletal muscle the myocardium has a length tension curve which results in an optimum level of stretch producing the maximum force of contraction. A healthy heart normally operates at a stretch less than this optimum level and when exercise causes increased venous return and increased stretch of the myocardium, the result is increased force of contraction to automatically pump the increased volume out of the heart. I.e. the heart automatically compensates its output to its input.

An important relationship in cardiac output is this one:

Blood Flow =  D Pressure / Resistance to Blood Flow      

Carbohydrates:

  • about 3% of the dry mass of a typical cell
  • composed of carbon, hydrogen, & oxygen atoms (e.g., glucose is C6H12O6)
  • an important source of energy for cells
  • types include:
    • monosaccharide (e.g., glucose) - most contain 5 or 6 carbon atoms
    • disaccharides
      • 2 monosaccharides linked together
      • Examples include sucrose (a common plant disaccharide is composed of the monosaccharides glucose and fructose) & lactose (or milk sugar; a disaccharide composed of glucose and the monosaccharide galactose)
    • polysaccharides
      • several monosaccharides linked together

Examples include starch (a common plant polysaccharide made up of many glucose molecules) and glycogen (commonly stored in the liver)

Explore by Exams