Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

1.Rhythmicity ( Chronotropism ) :  means the ability of heart to beat regularly ( due to repetitive and stable depolarization and repolarization )  . Rhythmicity of heart is a myogenic in origin , because cardiac muscles are automatically excited muscles and does not depend on the nervous stimulus to initiate excitation and then contraction . The role of nerves is limited to the regulation of the heart rate and not to initiate the beat.

There are many evidences that approve the myogenic and not neurogenic origin of the rhythmicity of cardiac muscle . For example :
-  transplanted heart continues to beat regularly without any nerve supply.
-  Embryologically the heart starts to beat before reaching any nerves to them.
-  Some drugs that paralyze the nerves ( such as cocaine ) do not stop the heart in given doses.

Spontaneous rhythmicity of the cardiac muscle due to the existence of excitatory - conductive system , which is composed of self- exciting non-contractile cardiac muscle cells . The SA node of the mentioned system excites in a rate , that is the most rapid among the other components of the system ( 110 beats /minute ) , which makes it the controller or ( the pacemaker ) of the cardiac rhythm of the entire heart.

Mechanism , responsible for self- excitation in the SA node and the excitatory conductive system  is due to the following properties of the cell membrane of theses cells :
1- Non-gated sodium channels
2- Decreased permeability to potassium
3- existence of slow and fast calcium channels.

These properties enable the cations ( sodium through the none-gated sodium voltage channels , calcium through calcium slow channels) to enter the cell and depolarize the cell membrane without need for external stimulus.

The resting membrane potential of non-contractile cardiac cell is -55 - -60 millivolts ( less than that of excitable nerve cells (-70) ) . 

The threshold is also less negative than that of nerve cells ( -40 millivolts ).

The decreased permeability to potassium from its side decrease the eflux  of potassium during the repolarization phase of the pacemaker potential . All of these factors give the pacemaker potential its characteristic shape

Repeating of the pacemaker potential between the action potentials of contractile muscle cells is the cause of spontaneous rhythmicity of cardiac muscle cells.

Factors , affecting the rhythmicity of the cardiac muscle :


I. Factors that increase the rate ( positive chronotropic factors) :
1. sympathetic stimulation : as its neurotransmitter norepinephrine increases the membrane permeability to sodium and calcium.
2. moderate warming : moderate warming increases temperature by 10 beats for each 1 Fahrenheit degree increase in body temperature, this due to decrease in permeability to potassium ions in pacemaker membrane by moderate increase in temperature.
3. Catecholaminic drugs have positive chronotropic effect.
4. Thyroid hormones : have positive chronotropic effect , due to the fact that these drugs increase the sensitivity of adrenergic receptors to adrenaline and noreadrenaline .
5. mild hypoxia.
6. mild alkalemia : mild alkalemia decreases the negativity of the resting potential.
7. hypocalcemia.
8. mild hypokalemia


II. Factors that decrease rhythmicity ( negative chronotropic):


1.Vagal stimulation : the basal level of vagal stimulation inhibits the sinus rhythm and decrease it from 110-75 beats/ minute. This effect due to increasing the permeability of the cardiac muscle cell to potassium , which causes rapid potassium eflux , which increases the negativity inside the cardiac cells (hyperpolarization ).
2. moderate cooling
3. severe warming : due to cardiac damage , as a result of intercellular protein denaturation. Excessive cooling on the other hand decrease metabolism and stops rhythmicity.
4. Cholenergic drugs ( such as methacholine , pilocarpine..etc) have negative chronotropic effect.
5. Digitalis : these drugs causes hyperpolarization . This effect is similar to that of vagal stimulation.
6. Hypercapnia ( excessive CO2 production )
7. Acidemia.
8. hyper- and hyponatremia .
9. hyperkalemia
10. hypercalcemia
11. Typhoid or diphteria toxins.

A small fraction of cardiac muscle fibers have myogenicity and autorhythmicity.

Myogenicity is the property of spontaneous impulse generation. The slow sodium channels are leaky and cause the polarity to spontaneously rise to threshold for action potential generation. The fastest of these cells, those in the SA node, set the pace for the heartbeat.

Autorhythmicity - the natural rhythm of spontaneous depolarization. Those with the fastest autorhythmicity act as the 1. heart's pacemaker.

Contractility - like skeletal muscle, most cardiac muscle cells respond to stimuli by contracting. The autorhythmic cells have very little contractility however. Contractility in the other cells can be varied by the effect of neurotransmitters.

Inotropic effects - factors which affect the force or energy of muscular contractions. Digoxin, epinephrine, norepinephrine, and dopamine have positive inotropic effects. Betal blockers and calcium channel blockers have negative inotropic effects 

Sequence of events in cardiac conduction: The electrical events in the cardiac cycle.

1) SA node depolarizes and the impulse spreads across the atrial myocardium and through the internodal fibers to the AV node. The atrial myocardium depolarizes resulting in atrial contraction, a physical event.

2) AV node picks up the impulse and transfers it to the AV Bundle (Bundle of His). This produces the major portion of the delay seen in the cardiac cycle. It takes approximately .03 sec from SA node depolarization to the impulse reaching the AV node, and .13 seconds for the impulse to get through the AV node and reach the Bundle of His. Also during this period the atria repolarize.

3) From the AV node the impulse travels through the bundle branches and through the Purkinje fibers to the ventricular myocardium, causing ventricular depolarization and ventricular contraction, a physical event.

4) Ventricular repolarization occurs.

The Sliding Filament mechanism of muscle contraction.

When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens

 

The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.

It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together

 

Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex. 

The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.

Lung volumes and capacities: 
I. Lung`s volumes
1. Tidal volume (TV) : is the volume of air m which is inspired and expired during one quiet breathing . It equals to 500 ml.
 

2. Inspiratory reserve volume (IRV) : The volume of air that could be inspired over and beyond the tidal volume. It equals to 3000 ml of air.
 

3. Expiratory reserve volume (ERV) : A volume of air that could be forcefully expired after the end of quiet tidal volume. It is about 1100 ml of air.
 

4. Residual volume (RV) : the extra volume of air that may remain in the lung after the forceful expiration . It is about 1200 ml of air.
 

5. Minute volume : the volume of air that is inspired or expired within one minute. It is equal to multiplying of respiratory rate by tidal volume = 12X500= 6000 ml.
It is in female  lesser than that in male.
II. Lung`s capacities :
1. Inspiratory capacity: TV + IRV
2. Vital capacity : TV+IRV+ERV
3. Total lung capacity : TV+IRV+ERV+RV

Cardiac Output:

Minute Volume = Heart Rate X Stroke Volume

Heart rate, HR at rest = 65 to 85 bpm  

Each heartbeat at rest takes about .8 sec. of which .4 sec. is quiescent period.

Stroke volume, SV at rest = 60 to 70 ml.

Heart can increase both rate and volume with exercise. Rate increase is limited due to necessity of minimum ventricular diastolic period for filling. Upper limit is usually put at about 220 bpm. Maximum heart rate calculations are usually below 200. Target heart rates for anaerobic threshold are about 85 to 95% of maximum.

Terms:

End Diastolic Volume, EDV - the maximum volume of the ventricles achieved at the end of ventricular diastole. This is the amount of blood the heart has available to pump. If this volume increases the cardiac output increases in a healthy heart.

End Systolic Volume, ESV - the minimum volume remaining in the ventricle after its systole. If this volume increases it means less blood has been pumped and the cardiac output is less.

EDV - ESV = SV

SV / EDV = Ejection Fraction The ejection fraction is normally around 50% at rest and will increase during strenuous exercise in a healthy heart. Well trained athletes may have ejection fractions approaching 70% in the most strenuous exercise.

Isovolumetric Contraction Phase - a brief period at the beginning of ventricular systole when all valves are closed and ventricular volume remains constant. Pressure has risen enough in the ventricle to close the AV valves but not enough to open the semilunar valves and cause ejection of blood. 

Isovolumetric Relaxation Phase - a brief period at the beginning of ventricular diastole when all valves are closed and ventricular volume is constant. Pressure in the ventricle has lowered producing closure of the semilunar valves but not opening the AV valves to begin pulling blood into the ventricle.

Dicrotic Notch - the small increase in pressure of the aorta or other artery seen when recording a pulse wave. This occurs as blood is briefly pulled back toward the ventricle at the beginning of diastole thus closing the semilunar valves.

Preload - This is the pressure at the end of ventricular diastole, at the beginning of ventricular systole. It is proportional to the End Diastolic Volume (EDV), i.e. as the EDV increases so does the preload of the heart. Factors which increase the preload are: increased total blood volume, increased venous tone and venous return, increased atrial contraction, and the skeletal muscular pump.

Afterload - This is the impedence against which the left ventricle must eject blood, and it is roughly proportional to the End Systolic Volume (ESV). When the peripheral resistance increases so does the ESV and the afterload of the heart. 

The importance of these parameters are as a measure of efficiency of the heart, which increases as the difference between preload and afterload increases

Blood Groups

Blood groups are created by molecules present on the surface of red blood cells (and often on other cells as well).

The ABO Blood Groups

The ABO blood groups are the most important in assuring safe blood transfusions.

Blood Group

Antigens on RBCs

Antibodies in Serum

Genotypes

A

A

Anti-B

AA or AO

B

B

Anti-A

BB or BO

AB

A and B

Neither

AB

O

Neither

Anti-A and anti-B

OO

When red blood cells carrying one or both antigens are exposed to the corresponding antibodies, they agglutinate; that is, clump together. People usually have antibodies against those red cell antigens that they lack.

The critical principle to be followed is that transfused blood must not contain red cells that the recipient's antibodies can clump. Although theoretically it is possible to transfuse group O blood into any recipient, the antibodies in the donated plasma can damage the recipient's red cells. Thus all transfusions should be done with exactly-matched blood.

The Rh System

Rh antigens are transmembrane proteins with loops exposed at the surface of red blood cells. They appear to be used for the transport of carbon dioxide and/or ammonia across the plasma membrane. They are named for the rhesus monkey in which they were first discovered.

There are a number of Rh antigens. Red cells that are "Rh positive" express the one designated D. About 15% of the population have no RhD antigens and thus are "Rh negative".

The major importance of the Rh system for human health is to avoid the danger of RhD incompatibility between mother and fetus.

During birth, there is often a leakage of the baby's red blood cells into the mother's circulation. If the baby is Rh positive (having inherited the trait from its father) and the mother Rh-negative, these red cells will cause her to develop antibodies against the RhD antigen. The antibodies, usually of the IgG class, do not cause any problems for that child, but can cross the placenta and attack the red cells of a subsequent Rh+ fetus. This destroys the red cells producing anemia and jaundice. The disease, called erythroblastosis fetalis or hemolytic disease of the newborn, may be so severe as to kill the fetus or even the newborn infant. It is an example of an antibody-mediated cytotoxicity disorder.

Although certain other red cell antigens (in addition to Rh) sometimes cause problems for a fetus, an ABO incompatibility does not. Rh incompatibility so dangerous when ABO incompatibility is not

It turns out that most anti-A or anti-B antibodies are of the IgM class and these do not cross the placenta. In fact, an Rh/type O mother carrying an Rh+/type A, B, or AB fetus is resistant to sensitization to the Rh antigen. Presumably her anti-A and anti-B antibodies destroy any fetal cells that enter her blood before they can elicit anti-Rh antibodies in her.

This phenomenon has led to an extremely effective preventive measure to avoid Rh sensitization. Shortly after each birth of an Rh+ baby, the mother is given an injection of anti-Rh antibodies. The preparation is called Rh immune globulin (RhIG) or Rhogam. These passively acquired antibodies destroy any fetal cells that got into her circulation before they can elicit an active immune response in her.

Rh immune globulin came into common use in the United States in 1968, and within a decade the incidence of Rh hemolytic disease became very low.

(RDS) Respiratory distress of Newborn
1.    hyaline membrane disease of the new born
2.    decrease in surfactant, Weak, Abnormal complience of chest wall
3.    Small alveoli, difficult to inflate, Alveoli tent to collapse, many of varied sizes
4.    decrease in O2 diffusion area, lung difficult to expand, in compliance

Explore by Exams