Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

 

Basic Properties of Gases

A.    Dalton's Law of Partial Pressures

1.    partial pressure - the "part" of the total air pressure caused by one component of a gas 

 

 

 

     Gas            Percent            Partial Pressure (P)
    ALL AIR        100.0%                760 mm Hg
    Nitrogen       78.6%                   597 mm Hg    (0.79 X 760)
    Oxygen          20.9%                l59 mm Hg    (0.21 X 760)
    CO2              0.04%                  0.3 mm Hg    (0.0004 X 760) 

2.    altitude - air pressure @ 10,000 ft = 563 mm Hg
3.    scuba diving - air pressure @ 100 ft = 3000 mm Hg

B.    Henry's Law of Gas Diffusion into Liquid

1.    Henry's Law - a certain gas will diffuse INTO or OUT OF a liquid down its concentration gradient in proportion to its partial pressure

2.    solubility - the ease with which a certain gas will "dissolve" into a liquid (like blood plasma)

HIGHest solubility in plasma            Carbon Dioxide
                                                      Oxygen
                                        
LOWest solubility in plasma             Nitrogen

C.    Hyperbaric (Above normal pressure) Conditions

1.    Creates HIGH gradient for gas entry into the body

2.    therapeutic - oxygen forced into blood during: carbon monoxide poisoning, circulatory shock, asphyxiation, gangrene, tetanus, etc.

3.    harmful - SCUBA divers may suffer the "bends" when they rise too quickly and Nitrogen gas "comes out of solution" and forms bubbles in the blood

 

 

 

 

Plasma:  is the straw-colored liquid in which the blood cells are suspended.

Composition of blood plasma

Component

Percent

Water

~92

Proteins

6–8

Salts

0.8

Lipids

0.6

Glucose (blood sugar)

0.1

Plasma transports materials needed by cells and materials that must be removed from cells:

  • various ions (Na+, Ca2+, HCO3, etc.
  • glucose and traces of other sugars
  • amino acids
  • other organic acids
  • cholesterol and other lipids
  • hormones
  • urea and other wastes

Most of these materials are in transit from a place where they are added to the blood

  • exchange organs like the intestine
  • depots of materials like the liver

to places where they will be removed from the blood.

  • every cell
  • exchange organs like the kidney, and skin.

Respiratory system plays important role in maintaining homeostasis . Other than its major function , which is supplying the cells with needed oxygen to produce energy and getting rid of carbon dioxide , it has other functions :

1 Vocalization , or sound production.
2 Participation in acid base balance .
3 Participation in fluid balance by insensible water elimination (vapors ).
4 Facilitating venous return .
5 Participation in blood pressure regulation : Lungs produce Angiotensin converting enzyme ( ACE ) .
6 Immune function : Lungs produce mucous that trap foreign particles , and have ciliae that move foreign particles away from the lung. They also produce alpha 1 antitrepsin that protect the lungs themselves from the effect of elastase and other proteolytic  enzymes

As the contents of the stomach become thoroughly liquefied, they pass into the duodenum, the first segment  of the small intestine. The duodenum is the first 10" of the small intestine

Two ducts enter the duodenum:

  • one draining the gall bladder and hence the liver
  • the other draining the exocrine portion of the pancreas.

From the intestinal mucosal cells, and from the liver and gallbladder. Secretions from the pancreas and bile from the gallbladder enter the duodenum through the hepatopancreatic ampulla and the sphincter of Oddi. These lie where the pancreatic duct and common bile duct join before entering the duodenum. The presence of fatty chyme in the duodenum causes release of the hormone CCK into the bloodstream. CCK is one of the enterogastrones and its main function, besides inhibiting the stomach, is to stimulate the release of enzymes by the pancreas, and the contraction of the gallbladder to release bile. It also stimulates the liver to produce bile. Consumption of excess fat results in excessive bile production by the liver, and this can lead to the formation of gallstones from precipitation of the bile salts. 

The acid in the chyme stimulates the release of secretin which causes the pancreas to release bicarbonate which neutralizes the acidity

Cystic Fibrosis
→ Thick mucus coagulates in ducts, produces obstruction, Too thick for cilia to move
 
→ Major Systems Affected: Respiratory System, G. I. Tract,Reproductive Tract

→ Inherited, autosomal recessive gene, most common fatal genetic disorder

→    Major characteristic, Altered electrolyte composition (Saliva & sweat Na+, K+, Cl-)

→    Family history of Cystic Fibrosis
→    Respiratory Infections & G.I.Tract malabsorption
→    Predisposes lung to Secondary infection (Staphylococcus, Pseudomonas)
→    Damages Respiratory Bronchioles and Alveolar ducts, Produces Fibrosis of Lungs, Large cystic dilations)

Levels of Organization:

CHEMICAL LEVEL - includes all chemical substances necessary for life (see, for example, a small portion - a heme group - of a hemoglobin molecule); together form the next higher level

CELLULAR LEVEL - cells are the basic structural and functional units of the human body & there are many different types of cells (e.g., muscle, nerve, blood)

TISSUE LEVEL - a tissue is a group of cells that perform a specific function and the basic types of tissues in the human body include epithelial, muscle, nervous, and connective tissues

ORGAN LEVEL - an organ consists of 2 or more tissues that perform a particular function (e.g., heart, liver, stomach)

SYSTEM LEVEL - an association of organs that have a common function; the major systems in the human body include digestive, nervous, endocrine, circulatory, respiratory, urinary, and reproductive.

There are two types of cells that make up all living things on earth: prokaryotic and eukaryotic. Prokaryotic cells, like bacteria, have no 'nucleus', while eukaryotic cells, like those of the human body, do.

Surface Tension

1.    Maintains stability of alveolus, preventing collapse

2.    Surfactant (Type II pneumocytes) = dipalmityl lecithin

3.    Type II pneumocyte appears at 24 weeks of gestation;
    
1.    Surfactant production, 28-32 weeks;
    2.    Surfactant in amniotic fluid, 35 weeks.
    3.    Laplace equation for thin walled spheres P = 2T
        a.    P = alveolar internal pressure r
        b.    T = tension in the walls r = radius of alveolus
        
4.    During normal tidal respiration

    1.    Some alveoli do collapse (Tidal pressure can't open)
    2.    Higher than normal pressure needed (Coughing)
    3.    Deep breaths & sighs promote re-expansion
    4.    After surgery/Other conditions, Coughing, deep breathing, sustained maximal respiration

Explore by Exams