NEET MDS Lessons
Physiology
SPECIAL SOMATIC AFFERENT (SSA) PATHWAYS
Hearing
The organ of Corti with its sound-sensitive hair cells and basilar membrane are important parts of the sound transducing system for hearing. Mechanical vibrations of the basilar membrane generate membrane potentials in the hair cells which produce impulse patterns in the cochlear portion of the vestibulocochlear nerve (VIII)
Special somatic nerve fibers of cranial nerve VIII relay impulses from the sound receptors (hair cells) in the cochlear nuclei of the brainstem
These are bipolar neurons with cell bodies located in the spiral ganglia of the cochlea.
Vestibular System
The vestibulocochlear nerve serves two quite different functions.
The cochlear portion, conducts sound information to the brain,
The vestibular portion conducts proprioceptive information.
It is the central neural pathways
Special somatic afferent fibers from the hair cells of the macula utriculi and macula sacculi conduct information into the vestibular nuclei on the ipsilateral side of the pons and medulla.
These are bipolar neurons with cell bodies located in the vestibular ganglion.
Some of the fibers project directly into the ipsilateral cerebellum to terminate in the uvula, flocculus, and nodulus, but most enter the vestibular nuclei and synapse there.
Vision
The visual system receptors are the rods and cones of the retina.
Special somatic afferent fibers of the optic nerve (II) conduct visual signals into the brain
Fibers from the lateral (temporal) retina of either eye terminate in the lateral geniculate body on the same side of the brain as that eye.
SSA II fibers from the medial (nasal) retina of each eye cross over in the optic chiasm to terminate in the contralateral lateral geniculate body.
Area 17 is the primary visual area, which receives initial visual signals.
Neurons from this area project into the adjacent occipital cortex (areas 18 and 19) which is known as the secondary visual area. It is here that the visual signal is fully evaluated.
The visual reflex pathway involving the pupillary light reflex - in which the pupils constrict when a light is shined into the eyes and dilate when the light is removed.
Some SSA II fibers leave the optic tract before reaching the lateral geniculates, terminating in the superior colliculi instead.
From here, short neurons project to the EdingerWestphal nucleus (an accessory nucleus of III) in the midbrain, which serves as the origin of the preganglionic parasympathetic fibers of the oculomotor nerve (GVE III).
The GVE III fibers in turn project to the ciliary ganglia, from which arise the postganglionic fibers to the sphincter muscles of the iris, which constrict the pupils.
Water: comprises 60 - 90% of most living organisms (and cells) important because it serves as an excellent solvent & enters into many metabolic reactions
- Intracellular (inside cells) = ~ 34 liters
- Interstitial (outside cells) = ~ 13 liters
- Blood plasma = ~3 liters
40% of blood is red blood cells (RBCs)
plasma is similar to interstitial fluid, but contains plasma proteins
serum = plasma with clotting proteins removed
intracellular fluid is very different from interstitial fluid (high K concentration instead of high Na concentration, for example)
- Capillary walls (1 cell thick) separate blood from interstitial fluid
- Cell membranes separate intracellular and interstitial fluids
- Loss of about 30% of body water is fatal
Ions = atoms or molecules with unequal numbers of electrons and protons:
- found in both intra- & extracellular fluid
- examples of important ions include sodium, potassium, calcium, and chloride
Ions (Charged Atoms or Molecules) Can Conduct Electricity
- Giving up electron leaves a + charge (cation)
- Taking on electron produces a - charge (anion)
- Ions conduct electricity
- Without ions there can be no nerves or excitability
- Na+ and K+ cations
- Ca2+ and Mg2+ cations control metabolism and trigger muscle contraction and secretion of hormones and transmitters
Na+ & K+ are the Major Cations in Biological Fluids
- High K+ in cells, high Na+ outside
- Ion gradients maintained by Na pump (1/3 of basal metabolism)
- Think of Na+ gradient as a Na+ battery- stored electrical energy
- K+ gradient forms a K+ battery
- Energy stored in Na+ and K+ batteries can be tapped when ions flow
- Na+ and K+ produce action potential of excitable cells
Vital Capacity: The vital capacity (VC) is the maximum volume which can be ventilated in a single breath. VC= IRV+TV+ERV. VC varies with gender, age, and body build. Measuring VC gives a device for diagnosis of respiratory disorder, and a benchmark for judging the effectiveness of treatment. (4600 ml)
Vital Capacity is reduced in restrictive disorders, but not in disorders which are purely obstructive.
The FEV1 is the % of the vital capacity which is expelled in the first second. It should be at least 75%. The FEV1 is reduced in obstructive disorders.
Both VC and the FEV1 are reduced in disorders which are both restrictive and obstructive
Oxygen is present at nearly 21% of ambient air. Multiplying .21 times 760 mmHg (standard pressure at sea level) yields a pO2 of about 160. Carbon dioxide is .04% of air and its partial pressure, pCO2, is .3.
With alveolar air having a pO2 of 104 and a pCO2 of 40. So oxygen diffuses into the alveoli from inspired air and carbon dioxide diffuses from the alveoli into air which will be expired. This causes the levels of oxygen and carbon dioxide to be intermediate in expired air when compared to inspired air and alveolar air. Some oxygen has been lost to the alveolus, lowering its level to 120, carbon dioxide has been gained from the alveolus raising its level to 27.
Likewise a concentration gradient causes oxygen to diffuse into the blood from the alveoli and carbon dioxide to leave the blood. This produces the levels seen in oxygenated blood in the body. When this blood reaches the systemic tissues the reverse process occurs restoring levels seen in deoxygenated blood.
COPD and Cancer
A. Chronic Obstructive Pulmonary Disease (COPD)
1. Common features of COPD
a. almost all have smoking history
b. dyspnea - chronic "gasping" for air
c. frequent coughing and infections
d. often leads to respiratory failure
2. obstructive emphysema - usually results from smoking
a. enlargement & deterioration of alveoli
b. loss of elasticity of the lungs
c. "barrel chest" from bronchiole opening during inhalation & constriction during exhalation
3. chronic bronchitis - mucus/inflammation of mucosa
B. Lung Cancer
1. squamous cell carcinoma (20-40%) - epithelium of the bronchi and bronchioles
2. adenocarcinoma (25-35%) - cells of bronchiole glands and cells of the alveoli
3. small cell carcinoma (10-20%) - special lymphocyte-like cells of the bronchi
4. 90% of all lung cancers are in people who smoke or have smoked
1 - Passive processes - require no expenditure of energy by a cell:
- Simple diffusion = net movement of a substance from an area of high concentration to an area of low concentration. The rate of diffusion is influenced by:
- concentration gradient
- cross-sectional area through which diffusion occurs
- temperature
- molecular weight of a substance
- distance through which diffusion occurs
- Osmosis = diffusion of water across a semi permeable membrane (like a cell membrane) from an area of low solute concentration to an area of high solute concentration
- Facilitated diffusion = movement of a substance across a cell membrane from an area of high concentration to an area of low concentration. This process requires the use of 'carriers' (membrane proteins). In the example below, a ligand molecule (e.g., acetylcholine) binds to the membrane protein. This causes a conformational change or, in other words, an 'opening' in the protein through which a substance (e.g., sodium ions) can pass.
2 - Active processes - require the expenditure of energy by cells:
- Active transport = movement of a substance across a cell membrane from an area of low concentration to an area of high concentration using a carrier molecule
- Endo- & exocytosis - moving material into (endo-) or out of (exo-) cell in bulk form
Events in Muscle Contraction - the sequence of events in crossbridge formation:
1) In response to Ca2+ release into the sarcoplasm, the troponin-tropomyosin complex removes its block from actin, and the myosin heads immediately bind to active sites.
2) The myosin heads then swivel, the Working Stroke, pulling the Z-lines closer together and shortening the sarcomeres. As this occurs the products of ATP hydrolysis, ADP and Pi, are released.
3) ATP is taken up by the myosin heads as the crossbridges detach. If ATP is unavailable at this point the crossbridges cannot detach and release. Such a condition occurs in rigor mortis, the tensing seen in muscles after death, and in extreme forms of contracture in which muscle metabolism can no longer provide ATP.
4) ATP is hydrolyzed and the energy transferred to the myosin heads as they cock and reset for the next stimulus.
Excitation-Contraction Coupling: the Neuromuscular Junction
Each muscle cell is stimulated by a motor neuron axon. The point where the axon terminus contacts the sarcolemma is at a synapse called the neuromuscular junction. The terminus of the axon at the sarcolemma is called the motor end plate. The sarcolemma is polarized, in part due to the unequal distribution of ions due to the Sodium/Potassium Pump.
1) Impulse arrives at the motor end plate (axon terminus) causing Ca2+ to enter the axon.
2) Ca2+ binds to ACh vesicles causing them to release the ACh (acetylcholine) into the synapse by exocytosis.
3) ACH diffuses across the synapse to bind to receptors on the sarcolemma. Binding of ACH to the receptors opens chemically-gated ion channels causing Na+ to enter the cell producing depolarization.
4) When threshold depolarization occurs, a new impulse (action potential) is produced that will move along the sarcolemma. (This occurs because voltage-gated ion channels open as a result of the depolarization -
5) The sarcolemma repolarizes:
a) K+ leaves cell (potassium channels open as sodium channels close) returning positive ions to the outside of the sarcolemma. (More K+ actually leaves than necessary and the membrane is hyperpolarized briefly. This causes the relative refractory period) (b) Na+/K+ pump eventually restores resting ion distribution. The Na+/K+ pump is very slow compared to the movement of ions through the ion gates. But a muscle can be stimulated thousands of times before the ion distribution is substantially affected.
6) ACH broken down by ACH-E (a.k.a. ACHase, cholinesterase). This permits the receptors to respond to another stimulus.
Excitation-Contraction Coupling:
1) The impulse (action potential) travels along the sarcolemma. At each point the voltaged-gated Na+ channels open to cause depolarization, and then the K+ channels open to produce repolarization.
2) The impulse enters the cell through the T-tublules, located at each Z-disk, and reach the sarcoplasmic reticulum (SR), stimulating it.
3) The SR releases Ca2+ into the sarcoplasm, triggering the muscle contraction as previously discussed.
4) Ca2+ is pumped out of the sarcoplasm by the SR and another stimulus will be required to continue the muscle contraction.
1.Rhythmicity ( Chronotropism ) : means the ability of heart to beat regularly ( due to repetitive and stable depolarization and repolarization ) . Rhythmicity of heart is a myogenic in origin , because cardiac muscles are automatically excited muscles and does not depend on the nervous stimulus to initiate excitation and then contraction . The role of nerves is limited to the regulation of the heart rate and not to initiate the beat.
There are many evidences that approve the myogenic and not neurogenic origin of the rhythmicity of cardiac muscle . For example :
- transplanted heart continues to beat regularly without any nerve supply.
- Embryologically the heart starts to beat before reaching any nerves to them.
- Some drugs that paralyze the nerves ( such as cocaine ) do not stop the heart in given doses.
Spontaneous rhythmicity of the cardiac muscle due to the existence of excitatory - conductive system , which is composed of self- exciting non-contractile cardiac muscle cells . The SA node of the mentioned system excites in a rate , that is the most rapid among the other components of the system ( 110 beats /minute ) , which makes it the controller or ( the pacemaker ) of the cardiac rhythm of the entire heart.
Mechanism , responsible for self- excitation in the SA node and the excitatory conductive system is due to the following properties of the cell membrane of theses cells :
1- Non-gated sodium channels
2- Decreased permeability to potassium
3- existence of slow and fast calcium channels.
These properties enable the cations ( sodium through the none-gated sodium voltage channels , calcium through calcium slow channels) to enter the cell and depolarize the cell membrane without need for external stimulus.
The resting membrane potential of non-contractile cardiac cell is -55 - -60 millivolts ( less than that of excitable nerve cells (-70) ) .
The threshold is also less negative than that of nerve cells ( -40 millivolts ).
The decreased permeability to potassium from its side decrease the eflux of potassium during the repolarization phase of the pacemaker potential . All of these factors give the pacemaker potential its characteristic shape
Repeating of the pacemaker potential between the action potentials of contractile muscle cells is the cause of spontaneous rhythmicity of cardiac muscle cells.
Factors , affecting the rhythmicity of the cardiac muscle :
I. Factors that increase the rate ( positive chronotropic factors) :
1. sympathetic stimulation : as its neurotransmitter norepinephrine increases the membrane permeability to sodium and calcium.
2. moderate warming : moderate warming increases temperature by 10 beats for each 1 Fahrenheit degree increase in body temperature, this due to decrease in permeability to potassium ions in pacemaker membrane by moderate increase in temperature.
3. Catecholaminic drugs have positive chronotropic effect.
4. Thyroid hormones : have positive chronotropic effect , due to the fact that these drugs increase the sensitivity of adrenergic receptors to adrenaline and noreadrenaline .
5. mild hypoxia.
6. mild alkalemia : mild alkalemia decreases the negativity of the resting potential.
7. hypocalcemia.
8. mild hypokalemia
II. Factors that decrease rhythmicity ( negative chronotropic):
1.Vagal stimulation : the basal level of vagal stimulation inhibits the sinus rhythm and decrease it from 110-75 beats/ minute. This effect due to increasing the permeability of the cardiac muscle cell to potassium , which causes rapid potassium eflux , which increases the negativity inside the cardiac cells (hyperpolarization ).
2. moderate cooling
3. severe warming : due to cardiac damage , as a result of intercellular protein denaturation. Excessive cooling on the other hand decrease metabolism and stops rhythmicity.
4. Cholenergic drugs ( such as methacholine , pilocarpine..etc) have negative chronotropic effect.
5. Digitalis : these drugs causes hyperpolarization . This effect is similar to that of vagal stimulation.
6. Hypercapnia ( excessive CO2 production )
7. Acidemia.
8. hyper- and hyponatremia .
9. hyperkalemia
10. hypercalcemia
11. Typhoid or diphteria toxins.