NEET MDS Lessons
Physiology
Lipids:
- about 40% of the dry mass of a typical cell
- composed largely of carbon & hydrogen
- generally insoluble in water
- involved mainly with long-term energy storage; other functions are as structural components (as in the case of phospholipids that are the major building block in cell membranes) and as "messengers" (hormones) that play roles in communications within and between cells
- Subclasses include:
- Triglycerides - consist of one glycerol molecule + 3 fatty acids (e.g., stearic acid in the diagram below). Fatty acids typically consist of chains of 16 or 18 carbons (plus lots of hydrogens).
- phospholipids - Composed of 2 fatty acids, glycerol, phosphate and polar groups , phosphate group (-PO4) substitutes for one fatty acid & these lipids are an important component of cell membranes
steroids - have 4 rings- cholesterol, some hormones, found in membranes include testosterone, estrogen, & cholesterol
GENERAL VISCERAL AFFERENT (GVA) PATHWAYS
Pain and Pressure Sensation via the Spinal Cord
Visceral pain receptors are located in peritoneal surfaces, pleural membranes, the dura mater, walls of arteries, and the walls of the GI tube.
Nociceptors in the walls of the GI tube are particularly sensitive to stretch and overdistension.
General visceral nociceptors conduct signals into the spinal cord over the monopolar neurons of the posterior root ganglia. They terminate in laminae III and IV of the posterior horn as do the pain and temperature pathways of the GSA system , their peripheral processes reach the visceral receptors via the gray rami communicantes and ganglia of the sympathetic chain
Second-order neurons from the posterior horn cross in the anterior white commissure and ascend to the thalamus in the anterior and lateral spinothalamic tracts,
Projections from the VPL of the thalamus relay signals to the sensory cortex.
The localization of visceral pain is relatively poor, making it difficult to tell the exact source of the stimuli.
Blood Pressure, Blood Chemistry, and Alveolar Stretch Detection
The walls of the aorta and the carotid sinuses contain special baroreceptors (pressure receptors) which respond to changes in blood pressure. These mechanoreceptors are the peripheral endings of GVA fibers of the glossopharyngeal (IX) and vagus (X) nerves
The GVA fibers from the carotid sinus baroreceptors enter the solitary tract of the brainstem and terminate in the vasomotor center of the medulla (Fig-14). This is the CNS control center for cardiovascular activity.
Stretch receptors in the alveoli of the lungs conduct information concerning rhythmic alveolar inflation and deflation over GVA X fibers to the solitary tract and then to the respiratory center of the brainstem. This route is an important link in the Hering-Breuer reflex, which helps to regulate respiration.
Carotid body chemoreceptors, sensitive to changes in blood PO2 and, to a lesser extent, PCO2 and pH, conduct signals to both the vasomotor and respiratory centers over GVA IX nerve fibers
GVA X fibers conduct similar information from the aortic chemoreceptors to both centers
PHYSIOLOGY OF THE BRAIN
- The Cerebrum (Telencephalon) Lobes of the cerebral cortex
- Frontal Lobe
- Precentral gyrus, Primary Motor Cortex, point to point motor neurons, pyramidal cells: control motor neurons of the brain and spinal cord. See Motor homunculus
- Secondary Motor Cortex repetitive patterns
- Broca's Motor Speech area
- Anterior - abstract thought, planning, decision making, Personality
- Parietal Lobe
- Post central gyrus, Sensory cortex, See Sensory homunculus, size proportional to sensory receptor density.
- Sensory Association area, memory of sensations
- Occipital Lobe
- Visual cortex, sight (conscious perception of vision)
- Visual Association area, correlates visual images with previous images, (memory of vision, )
- Temporal Lobe
- Auditory Cortex, sound
- Auditory Association area, memory of sounds
- Common Integratory Center - angular gyrus, Parietal, Temporal & Occipital lobes
- One side becomes dominent, integrats sensory (somesthetic, auditory, visual) information
- The Basal nuclei (ganglia)
- Grey matter (cell bodies) within the White matter of cerebrum, control voluntary movements
- Cauadate nucles - chorea (rapi, uncontrolled movements), Parkinsons: (dopamine neurons of substantia nigra to caudate nucles) jerky movements, spasticity, tremor, blank facial expression
- The limbic system - ring around the brain stem, emotions(w/hypothalamus), processing of olfactory information
- Frontal Lobe
- The Diencephalon
- The Thalamus - Sensory relay center to cortex (primitive brain!)
- The Hypothalamus
- core temperature control"thermostat", shivering and nonshivering thermogenesis
- hunger & satiety centers, wakefulness, sleep, sexual arousal,
- emotions (w/limbic-anger, fear, pain, pleasure), osmoregulation, (ADH secretion),
- Secretion of ADH, Oxytocin, Releasing Hormones for Anterior pitutary
- Linkage of nervous and endocrine systems
- The Mesencephalon or Midbrain -
- red nucleus, motor coordination (cerebellum/Motor cortex),
- substantia nigra
- The Metencephalon
- The Cerebellum -
- Performs automatic adjustments in complex motor activities
- Input from Proprioceptors (joint, tendon, muscles), position of body in Space
- Motor cortex, intended movements (changes in position of body in Space)
- Damping (breaking motor function), Balance, predicting, inhibitory function of Purkinji cells (GABA), speed, force, direction of movement
- The Pons - Respiratory control centers (apneustic, pneumotaxic)
- Nuclei of cranial nerves V, VI, VII, VIII
- The Cerebellum -
- Myelencephalon
- The Medulla
- Visceral motor centers (vasomotor, cardioinhibtory, respiratory)
- Reticular Formation RAS system, alert cortex to incoming signals, maintenance of consciousness, arousal from sleep
- All Afferent & Efferent fibers pass through, crossing over of motor tracts
- Corpus Callosum: Permits communication between cerebralhemispheres
- The Medulla
- Generalized Brain Avtivity
- Brain Activity and the Electroencephalogram(EEG)
- alpha waves: resting adults whose eyes are closed
- beta waves: adults concentrating on a specific task;
- theta waves: adults under stress;
- delta waves: during deep sleep and in clinical disorders
- Brain Seizures
- Grand Mal: generalized seizures, involvs gross motor activity, affects the individual for a matter or hours
- Petit mal: brief incidents, affect consciousness but may have no obvious motor abnormalities
- Chemical Effects on the Brain
- Sedatives: reduce CNS activity
- Analgesics: relieve pain by affecting pain pathways or peripheral sensations
- Psychotropics: alter mood and emotional states
- Anticonvulsants: control seizures
- Stimulants: facilitate CNS activity
- Memory and learning
- Short-term, or primary, memories last a short time, immediately accessible (phone number)
- Secondary memories fade with time (your address at age 5)
- Tertiary memories last a lifetime (your name)
- Memories are stored within specific regions of the cerebral cortex.
- Learning, a more complex process involving the integration of memories and their use to direct or modify behaviors
- Neural basis for memory and learning has yet to be determined.
- Brain Activity and the Electroencephalogram(EEG)
- Fibers in CNS
- Association fibers: link portions of the cerebrum;
- Commissural fibers: link the two hemispheres;
- Projection fibers: link the cerebrum to the brain stem
Abnormalities of Salt, Water or pH
- Examples:
- Hyperkalemia: caused by kidney disease & medical malpractice
- High K+ in blood- can stop the heart in contraction (systole)
- Dehydration: walking in desert- can lose 1-2 liters/hour through sweat
- Blood becomes too viscous to circulate well -> loss of temperature regulation -> hyperthermia, death
- Acidosis: many causes including diabetes mellitus and respiratory problems; can cause coma, death
- Hyperkalemia: caused by kidney disease & medical malpractice
White Blood Cells (leukocytes)
White blood cells
- are much less numerous than red (the ratio between the two is around 1:700),
- have nuclei,
- participate in protecting the body from infection,
- consist of lymphocytes and monocytes with relatively clear cytoplasm, and three types of granulocytes, whose cytoplasm is filled with granules.
Lymphocytes: There are several kinds of lymphocytes, each with different functions to perform , 25% of wbc The most common types of lymphocytes are
- B lymphocytes ("B cells"). These are responsible for making antibodies.
- T lymphocytes ("T cells"). There are several subsets of these:
- inflammatory T cells that recruit macrophages and neutrophils to the site of infection or other tissue damage
- cytotoxic T lymphocytes (CTLs) that kill virus-infected and, perhaps, tumor cells
- helper T cells that enhance the production of antibodies by B cells
Although bone marrow is the ultimate source of lymphocytes, the lymphocytes that will become T cells migrate from the bone marrow to the thymus where they mature. Both B cells and T cells also take up residence in lymph nodes, the spleen and other tissues where they
- encounter antigens;
- continue to divide by mitosis;
- mature into fully functional cells.
Monocytes : also originate in marrow, spend up to 20 days in the circulation, then travel to the tissues where they become macrophages. Macrophages are the most important phagocyte outside the circulation. Monocytes are about 9% of normal wbc count
Macrophages are large, phagocytic cells that engulf
- foreign material (antigens) that enter the body
- dead and dying cells of the body.
Neutrophils
The most abundant of the WBCs. about 65% of normal white count These cells spend 8 to 10 days in the circulation making their way to sites of infection etc Neutrophils squeeze through the capillary walls and into infected tissue where they kill the invaders (e.g., bacteria) and then engulf the remnants by phagocytosis. They have two types of granules: the most numerous are specific granules which contain bactericidal agents such as lysozyme; the azurophilic granules are lysosomes containing peroxidase and other enzymes
Eosinophils : The number of eosinophils in the blood is normally quite low (0–450/µl). However, their numbers increase sharply in certain diseases, especially infections by parasitic worms. Eosinophils are cytotoxic, releasing the contents of their granules on the invader.
Basophils : rare except during infections where these cells mediate inflammation by secreting histamine and heparan sulfate (related to the anticoagulant heparin). Histamine makes blood vessels permeable and heparin inhibits blood clotting. Basophils are functionally related to mast cells. . The mediators released by basophils also play an important part in some allergic responses such as hay fever and an anaphylactic response to insect stings.
Thrombocytes (platelets):
Thrombocytes are cellular derivatives from megakaryocytes which contain factors responsible for the intrinsic clotting mechanism. They represent fragmented cells which contain residual organelles including rough endoplasmic reticulum and Golgi apparati. They are only 2-microns in diameter, are seen in peripheral blood either singly or, often, in clusters, and have a lifespan of 10 days.
Neurons :
Types of neurons based on structure:
a multipolar neuron because it has many poles or processes, the dendrites and the axon. Multipolar neurons are found as motor neurons and interneurons. There are also bipolar neurons with two processes, a dendrite and an axon, and unipolar neurons, which have only one process, classified as an axon.. Unipolar neurons are found as most of the body's sensory neurons. Their dendrites are the exposed branches connected to receptors, the axon carries the action potential in to the central nervous system.
Types of neurons based on function:
- motor neurons - these carry a message to a muscle, gland, or other effector. They are said to be efferent, i.e. they carry the message away from the central nervous system.
- sensory neurons - these carry a message in to the CNS. They are afferent, i.e. going toward the brain or spinal cord.
- interneuron (ie. association neuron, connecting neuron) - these neurons connect one neuron with another. For example in many reflexes interneurons connect the sensory neurons with the motor neurons.
Exchange of gases takes place in Lungs
- A person with an average ventilation rate of 7.5 L/min will breathe in and out 10,800 liters of gas each day
- From this gas the person will take in about 420 liters of oxygen (19 moles/day) and will give out about 340 liters of carbon dioxide (15 moles/day)
- The ratio of CO2 expired/O2 inspired is called the respiratory quotient (RQ)
- RQ = CO2 out/O2 in = 340/420 = 0.81
- In cellular respiration of glucose CO2 out = O2 in; RQ = 1
- The overall RQ is less than 1 because our diet is a mixture of carbohydrates and fat; the RQ for metabolizing fat is only 0.7
- All of the exchange of gas takes place in the lungs
- The lungs also give off large amounts of heat and water vapor