Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

The Sliding Filament mechanism of muscle contraction.

When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens

 

The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.

It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together

 

Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex. 

The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.

Normal Chemical Composition of Urine

Urine is an aqueous solution of greater than 95% water, with a minimum of these remaining constituents, in order of decreasing concentration:

Urea 9.3 g/L.

Chloride 1.87 g/L.

Sodium 1.17 g/L.

Potassium 0.750 g/L.

Creatinine 0.670 g/L .

Other dissolved ions, inorganic and organic compounds (proteins, hormones, metabolites).

Urine is sterile until it reaches the urethra, where epithelial cells lining the urethra are colonized by facultatively anaerobic gram-negative rods and cocci. Urea is essentially a processed form of ammonia that is non-toxic to mammals, unlike ammonia, which can be highly toxic. It is processed from ammonia and carbon dioxide in the liver.

Exchange of gases takes place in Lungs

  • A person with an average ventilation rate of 7.5 L/min will breathe in and out 10,800 liters of gas each day
  • From this gas the person will take in about 420 liters of oxygen (19 moles/day) and will give out about 340 liters of carbon dioxide (15 moles/day)
  • The ratio of CO2 expired/O2 inspired is called the respiratory quotient (RQ)
    • RQ = CO2 out/O2 in = 340/420 = 0.81
    • In cellular respiration of glucose CO2 out = O2 in; RQ = 1
    • The overall RQ is less than 1 because our diet is a mixture of carbohydrates and fat; the RQ for metabolizing fat is only 0.7
  • All of the exchange of gas takes place in the lungs
  • The lungs also give off large amounts of heat and water vapor

Ventilation simply means inhaling and exhaling of air from the atmospheric air into lungs and then exhaling it from the lung into the atmospheric air.
Air pressure gradient has to exist between two atmospheres to enable a gas to move from one atmosphere to an other.
 

During inspiration: the intrathoracic pressure has to be less than that of atmospheric pressure. This could be achieved by decreasing the intrathoracic pressure as follows:
 

Depending on Boyle`s law , the pressure of gas is inversely proportional to the volume of its container. So increasing the intrathoracic volume will decrease the intrathoracic pressure which will allow the atmospheric air to be inhaled (inspiration) . As decreasing the intrathoracic volume will increase the intrathoracic pressure and causes exhaling of air ( expiration)

 

So. Inspiration  could be actively achieved by the contraction of inspiratory muscles : diaphragm and intercostal muscles. While relaxation of the mentioned muscles will passively cause expiration.
 

Contraction of diaphragm will pull the diaphragm down the abdominal cavity ( will move inferiorly)  , and then increase the intrathoracic volume ( vertically)  . Contraction of external intercostal muscle will pull the ribs upward and forward which will additionally increase the intrathoracic volume ( transversely  , the net result will be increasing the intrathoracic volume and decreasing the intrathoracic pressure.
 

Relaxation of diaphragm will move it superiorly during expiration, the relaxation of external intercostal muscles will pull the ribs downward and backward , and the elastic lungs and chest wall will recoil. The net result is decreasing the intrathoracic volume and increasing intrathoracic pressure.
 

All of this occurs during quiet breathing. During forceful inspiration an accessory inspiratory muscle will be involved ( scaleni , sternocleidomastoid , and others) to increase negativity in the intrathoracic pressure more and more.
 

During forceful expiration the accessory expiratory muscles ( internal intercostal muscles and abdominal muscles ) will be involved to decrease the intrathoracic volume  more and more and then to increase  intrathoracic pressure more and more.

The pressure within the alveoli is called intralveolar  pressure . Between the two phases of respiration it is equal to the atmospheric pressure. It is decreased during inspiration ( about 1 cm H2O ) and increased during expiration ( about +1 cm H2O ) . This difference allow entering of 0.5 L of air into the lungs.

Intrapleural pressure is the pressure of thin fluid between the two pleural layers . It is a slight negative pressure. At the beginning of inspiration it is about -5 cm H2O and reachs -7.5 cm H2O at the end or inspiration.

At the beginning of expiration the intrapleural pressure is -7.5 cm H2O and reaches -5 cmH2O at the end of expiration.
The difference between intralveolar pressure and intrapleural pressure is called transpulmonary pressure.

 

 

Factors , affecting ventilation :
 

Resistance : Gradual decreasing of the diameter of respiratory airway increase the resistance to air flow.
 

Compliance : means the ease , which the lungs expand.It depends on both the elastic forces of the lungs and the elastic forces , caused by the the surface tension of the fluid, lining the alveoli.
 

Surface tension: Molecules of water have tendency to attract each other on the surface of water adjacent to air. In alveoli the surface tension caused by the fluid in the inner surface of the alveoli  may cause collapse of alveoli . The surface tension is decreased by the surfactant .

 

Surfactant is a mixture of phospholipids , proteins and ion m produced by type II pneumocytes.

Immature newborns may suffer from respiratory distress syndrome , due to lack of surfactant which is produced during the last trimester of pregnancy.
 

The elastic fibers of the thoracic wall also participate in lung compliance.

 

Levels of Organization:

CHEMICAL LEVEL - includes all chemical substances necessary for life (see, for example, a small portion - a heme group - of a hemoglobin molecule); together form the next higher level

CELLULAR LEVEL - cells are the basic structural and functional units of the human body & there are many different types of cells (e.g., muscle, nerve, blood)

TISSUE LEVEL - a tissue is a group of cells that perform a specific function and the basic types of tissues in the human body include epithelial, muscle, nervous, and connective tissues

ORGAN LEVEL - an organ consists of 2 or more tissues that perform a particular function (e.g., heart, liver, stomach)

SYSTEM LEVEL - an association of organs that have a common function; the major systems in the human body include digestive, nervous, endocrine, circulatory, respiratory, urinary, and reproductive.

There are two types of cells that make up all living things on earth: prokaryotic and eukaryotic. Prokaryotic cells, like bacteria, have no 'nucleus', while eukaryotic cells, like those of the human body, do.

Graded Contractions and Muscle Metabolism

The muscle twitch is a single response to a single stimulus. Muscle twitches vary in length according to the type of muscle cells involved. .

 

Fast twitch muscles such as those which move the eyeball have twitches which reach maximum contraction in 3 to 5 ms (milliseconds).  [superior eye] and [lateral eye] These muscles were mentioned earlier as also having small numbers of cells in their motor units for precise control.

The cells in slow twitch muscles like the postural muscles (e.g. back muscles, soleus) have twitches which reach maximum tension in 40 ms or so.

 The muscles which exhibit most of our body movements have intermediate twitch lengths of 10 to 20 ms.

The latent period, the period of a few ms encompassing the chemical and physical events preceding actual contraction.

This is not the same as the absolute refractory period, the even briefer period when the sarcolemma is depolarized and cannot be stimulated. The relative refractory period occurs after this when the sarcolemma is briefly hyperpolarized and requires a greater than normal stimulus

Following the latent period is the contraction phase in which the shortening of the sarcomeres and cells occurs. Then comes the relaxation phase, a longer period because it is passive, the result of recoil due to the series elastic elements of the muscle.

We do not use the muscle twitch as part of our normal muscle responses. Instead we use graded contractions, contractions of whole muscles which can vary in terms of their strength and degree of contraction. In fact, even relaxed muscles are constantly being stimulated to produce muscle tone, the minimal graded contraction possible.

Muscles exhibit graded contractions in two ways:

1) Quantal Summation or Recruitment - this refers to increasing the number of cells contracting. This is done experimentally by increasing the voltage used to stimulate a muscle, thus reaching the thresholds of more and more cells. In the human body quantal summation is accomplished by the nervous system, stimulating increasing numbers of cells or motor units to increase the force of contraction.

2) Wave Summation ( frequency summation) and Tetanization- this results from stimulating a muscle cell before it has relaxed from a previous stimulus. This is possible because the contraction and relaxation phases are much longer than the refractory period. This causes the contractions to build on one another producing a wave pattern or, if the stimuli are high frequency, a sustained contraction called tetany or tetanus. (The term tetanus is also used for an illness caused by a bacterial toxin which causes contracture of the skeletal muscles.) This form of tetanus is perfectly normal and in fact is the way you maintain a sustained contraction.

Treppe is not a way muscles exhibit graded contractions. It is a warmup phenomenon in which when muscle cells are initially stimulated when cold, they will exhibit gradually increasing responses until they have warmed up. The phenomenon is due to the increasing efficiency of the ion gates as they are repeatedly stimulated. Treppe can be differentiated from quantal summation because the strength of stimulus remains the same in treppe, but increases in quantal summation

Length-Tension Relationship: Another way in which the tension of a muscle can vary is due to the length-tension relationship. This relationship expresses the characteristic that within about 10% the resting length of the muscle, the tension the muscle exerts is maximum. At lengths above or below this optimum length the tension decreases.

A heart rate that is persistently greater than 100bpm is termed tachycardia. A heart rate that is persistantly lower than 60 pulse per min  is termed bradycardia. Let's examine some factors that could cause a change in heart rate:

  • Increased heart rate can be caused by:
    • Increased output of the cardioacceleratory center. In other words, greater activity of sympathetic nerves running to the heart and a greater release of norepinephrine on the heart.
    • Decreased output of the cardioinhibitory center. In other words, less vagus nerve activity and a decrease in the release of acetylcholine on the heart.
    • Increased release of the hormone epinephrine by the adrenal glands.
    • Nicotine.
    • Caffeine.
    • Hyperthyroidism - i.e., an overactive thyroid gland. This would lead to an increased amount of the hormone thyroxine in the blood.
  • Decreased heart rate can be caused by:
    • Decreased activity of the cardioacceleratory center.
    • Increased activity of the cardioinhibitory center.
    • Many others.

Explore by Exams