Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Heart is a hollow muscular organ , that is located in the middle mediastinum  between the two bony structures of the sternum and the vertebral column ( a very important location for applying Cardiopulmonary Resuscitation - CPR- ) .
It has a shape of clenched fist , which weighs about 300 grams ( with mild variation between male and female ).
  Heart has an apex that is anteriorly , inferiorly , and leftward oriented , and a base , that is posteriorly , superiorly and rightward oriented   .
 In addition to its apex and base the heart has anterior , posterior and left surfaces.
 
 The wall of the heart is composed of three layers :
 
1. Endocardium : The innermost layer , which lines the heart chambers and is in direct contact with the blood . It is composed of endothelial cells that are similar to those , that line the blood vessels , and of connective tissue too. 
 Endocardium has a smooth surface that prevents blood clotting, as it ensures laminar blood flow .

 Clinical Physiology 
 Endocarditis is the inflammation of the endocardium , which is resistant to antibiotic treatment and difficult to cure.Endocarditis usually involves heart valves and chordae tendineae too.

 2. Myocardium  : The middle layer of the cardiac wall . It is the thickest among the three layers , and is composed of two types of cardiac muscles :
a. contractile muscle cells (form about 98-99% of the cardiac muscle ) .
 b- non-contractile muscle cells ( form about 1-2 % of the cardiac muscles and are the cells that form excitatory-conductive system of the heart).
 The cardiac muscle cells are similar to the skeletal muscles in that they are striated , but similar to the smooth muscles in being involuntary and connected to each others via gap junctions , that facilitate conduction of electrical potential from one cell to the others. Desmosomes adhere cardiac muscle cells to each others .

 3- Epicardium :  is the outermost and protective layer of the heart . It is composed of connective tissue , and form the inner layer of the pericardium ( visceral pericardium - see bellow).

 Pericardium: 
The heart is surrounded by a fluid-fill sac , which is known as pericardium . Pericardium is composed of two layers ( doubled layer membrane ) , between which a fluid-fill pericardial cavity exist .

 The outer layer is called fibrous pericardium , while the inner layer is called serous pericardium , which is subdivided into parietal pericardium and visceral pericardium . The visceral pericardium is the previously mentioned outermost layer of heart ( epicardium) .
Pericardial sac plays an important role in protection of heart from external hazards and infections , as it fixes the heart and limits its motion. It also prevents excessive dilation of the heart.

Clinical physiology: 

When there is excessive fluid in the pericardial cavity as a result of pericardial effusion , a cardiac tamponade will develop . cardiac tamponade means compression of the heart within the pericardial sac , which will prevent the relaxation of the heart ( heart will not be able to fully expand ) , and thus the circulating blood volume will be decreased (obstructive shock) . This is a life threatening situation which has to be urgently cured by  pericardiocentesis . 


Chambers of the heart : 

Heart has four chambers : two atria and two ventricles . The two right and left atria are separated from the two ventricles by the fibrous skeleton , which involves the right ( tricuspid ) and left ( bicuspid ) valves. Right and left atria are separated from each other by the interatrial  septum .
The two ventricles are separated by the interventricular septum.Interventricular septum is muscular in its lower thick part and fibrous in its upper thin part.
The two atria holds the blood returning from the veins and empty it only in a given right moment into the ventricles. Ventricles pump the blood into the arteries . 

Heart valves : 


There are four valves in the heart : Two atrioventricular valves and two semi-lunar valves:
1. Atrioventricular ( AV ) valves: These valves are found between the atria and ventricles , depending on the number of  the leaflets , the right atrioventricular valve is also called tricuspid valve (has three leaflets ) , while the left one is called bicuspid valve (has two leaflets ) . The shape of the bicuspid valve is similar to the mitre of bishop , so it is also called the mitral valve.
The leaflets of the valves are attached to fibrous threads (composed of collagen fibers ) , known as chordae tendineae , which from their side are attached to papillary muscles in the ventricles. These valves prevent backward flow of blood from ventricles during the systole. 

2. Semi-lunar valves : 

These valves are located on the base of the arteries ( aorta and pulmonary artery ) . They prevent the backward flow of blood from the arteries into ventricles.
The structure of the semilunar valves is quite different from that of the AV valves , as they have crescent-shaped cusps that do not have chorda tendinea , instead these cusps are like pockets which are filled of blood when it returns to the ventricles from the lumen of arteries during the diastole  , so they get closed and prevent the backward flow of blood.

Vital Capacity: The vital capacity (VC) is the maximum volume which can be ventilated in a single breath. VC= IRV+TV+ERV. VC varies with gender, age, and body build. Measuring VC gives a device for diagnosis of respiratory disorder, and a benchmark for judging the effectiveness of treatment. (4600 ml)

Vital Capacity is reduced in restrictive disorders, but not in disorders which are purely obstructive.

The FEV1 is the % of the vital capacity which is expelled in the first second. It should be at least 75%. The FEV1 is reduced in obstructive disorders.

Both VC and the FEV1 are reduced in disorders which are both restrictive and obstructive

Oxygen is present at nearly 21% of ambient air. Multiplying .21 times 760 mmHg (standard pressure at sea level) yields a pO2 of about 160. Carbon dioxide is .04% of air and its partial pressure, pCO2, is .3.

With alveolar air having a pO2 of 104 and a pCO2 of 40. So oxygen diffuses into the alveoli from inspired air and carbon dioxide diffuses from the alveoli into air which will be expired. This causes the levels of oxygen and carbon dioxide to be intermediate in expired air when compared to inspired air and alveolar air. Some oxygen has been lost to the alveolus, lowering its level to 120, carbon dioxide has been gained from the alveolus raising its level to 27.

Likewise a concentration gradient causes oxygen to diffuse into the blood from the alveoli and carbon dioxide to leave the blood. This produces the levels seen in oxygenated blood in the body. When this blood reaches the systemic tissues the reverse process occurs restoring levels seen in deoxygenated blood.

Lung volumes and capacities: 
I. Lung`s volumes
1. Tidal volume (TV) : is the volume of air m which is inspired and expired during one quiet breathing . It equals to 500 ml.
 

2. Inspiratory reserve volume (IRV) : The volume of air that could be inspired over and beyond the tidal volume. It equals to 3000 ml of air.
 

3. Expiratory reserve volume (ERV) : A volume of air that could be forcefully expired after the end of quiet tidal volume. It is about 1100 ml of air.
 

4. Residual volume (RV) : the extra volume of air that may remain in the lung after the forceful expiration . It is about 1200 ml of air.
 

5. Minute volume : the volume of air that is inspired or expired within one minute. It is equal to multiplying of respiratory rate by tidal volume = 12X500= 6000 ml.
It is in female  lesser than that in male.
II. Lung`s capacities :
1. Inspiratory capacity: TV + IRV
2. Vital capacity : TV+IRV+ERV
3. Total lung capacity : TV+IRV+ERV+RV

  • There Are 12 Pairs of Cranial Nerves

  • The 12 pairs of cranial nerves emerge mainly from the ventral surface of the brain
  • Most attach to the medulla, pons or midbrain
  • They leave the brain through various fissures and foramina of the skull
  •  Nerve

     Name

     Sensory

     Motor

     Autonomic
    Parasympathetic

     I

     Olfactory

     Smell

     

     

     II

     Optic

     Vision

     

     

     III

    Oculomotor

     Proprioception

     4 Extrinsic eye muscles

      Pupil constriction
    Accomodation
    Focusing

     IV

     Trochlear

     Proprioception

     1 Extrinsic eye muscle (Sup.oblique)

     

     V

     Trigeminal

     Somatic senses
    (Face, tongue)

     Chewing

     

     VI

    Abducens

     Proprioception

     1 Extrinsic eye muscle (Lat. rectus)

     

     VII

     Facial

     Taste
    Proprioception
     

     Muscles of facial expression

     Salivary glands
    Tear glands

     VIII

     Auditory
    (Vestibulocochlear)

    Hearing, Balance

     

     

     IX

     Glossopharyngeal

     Taste
    Blood gases

     Swallowing
    Gagging

     Salivary glands

     X

     Vagus

    Blood pressure
    Blood gases
     Taste

     Speech
    Swallowing Gagging

    Many visceral organs
    (heart, gut, lungs)

     XI

     Spinal acessory

     Proprioception

     Neck muscles:
    Sternocleidomastoid
    Trapezius

     

     XII

     Hypoglossal

     Proprioception

     Tongue muscles
    Speech

     

     

  • Many of the functions that make us distinctly human are controlled by cranial nerves: special senses, facial expression, speech.
  • Cranial Nerves Contain Sensory, Motor and Parasympathetic Fibers

     

Bile contains:

  • bile acids. These amphiphilic steroids emulsify ingested fat. The hydrophobic portion of the steroid dissolves in the fat while the negatively-charged side chain interacts with water molecules. The mutual repulsion of these negatively-charged droplets keeps them from coalescing. Thus large globules of fat (liquid at body temperature) are emulsified into tiny droplets (about 1 µm in diameter) that can be more easily digested and absorbed.

 

  • bile pigments. These are the products of the breakdown of hemoglobin removed by the liver from old red blood cells. The brownish color of the bile pigments imparts the characteristic brown color of the feces.

Bile - produced in the liver and stored in the gallbladder, released in response to CCK . Bile salts (salts of cholic acid) act to emulsify fats, i.e. to split them so that they can mix with water and be acted on by lipase.

Pancreatic juice: Lipase - splits fats into glycerol and fatty acids. Trypsin, and chymotrypsin - protease enzymes which break polypeptides into dipeptides. Carboxypeptidase - splits dipeptide into amino acids. Bicarbonate - neutralizes acid. Amylase - splits polysaccharides into shorter chains and disaccharides.

Intestinal enzymes (brush border enzymes): Aminopeptidase and carboxypeptidase - split dipeptides into amino acids. Sucrase, lactase, maltase - break disaccharides into monosaccharides. Enterokinase - activates trypsinogen to produce trypsin. Trypsin then activates the precursors of chymotrypsin and carboxypeptidase. Other carbohydrases: dextrinase and glucoamylase. These are of minor importance.

Concentration versus diluting urine 

Kidney is a major route for eliminating fluid from the body to accomplish water balance. Urine excretion is the last step in urine formation. Everyday both kidneys excrete about 1.5 liters of urine.
Depending on the hydrated status of the body, kidney either excretes concentrated urine ( if the plasma is hypertonic like in dehydrated status ) or diluted urine ( if the plasma is hypotonic) .
This occurs thankful to what is known as countercurrent multiplying system, which functions thankfully to establishing large vertical osmotic gradient .
To understand this system, lets review the following facts:
1. Descending limb of loop of Henle is avidly permeable to water.
2. Ascending limb of loop of Henly is permeable to electrolytes , but impermeable to water. So fluid will not folow electrolytes by osmosis.and thus Ascending limb creates hypertonic interstitium that will attract water from descending limb.
Pumping of electrolytes
3. So: There is a countercurrent flow produced by the close proximity of the two limbs.                   
                                                   
Juxtamedullary nephrons have long loop of Henle that dips deep in the medulla , so the counter-current system is more obvious and the medullary interstitium is always hypertonic . In addition, peritubular capillaries in the medulla are straigh ( vasa recta) in which flow is rapid and rapidly reabsorb water maintaining hypertonic medullary interstitium.

In distal tubules water is diluted. If plasma is hypertonic, this will lead to release of ADH by hypothalamus, which will cause reabsorption of water in collecting tubules and thus excrete concentrated urine.

If plasma is hypotonic ADH will be inhibited and the diluted urine in distal  tubules will be excreted as diluted urine.

Urea  contributes to concentrating and diluting of urine as follows:

Urea is totally filtered and then 50% of filtrated urea will be reabsorbed to the interstitium, this will increase the osmolarity of medullary interstitium ( becomes hypertonic ). Those 50% will be secreted in ascending limb of loop of Henle back to tubular fluid to maintain osmolarity of tubular fluid. 55% of urea in distal nephron will be reabsorbed in collecting ducts back to the interstitium ( under the effect of ADH too) . This urea cycle additionally maintain hypertonic interstitium.

Explore by Exams