NEET MDS Lessons
Physiology
Proteins:
- about 50 - 60% of the dry mass of a typical cell
- subunit is the amino acid & amino acids are linked by peptide bonds
- 2 functional categories = structural (proteins part of the structure of a cell like those in the cell membrane) & enzymes
Enzymes are catalysts. Enzymes bind temporarily to one or more of the reactants of the reaction they catalyze. In doing so, they lower the amount of activation energy needed and thus speed up the reaction
Blood Transfusions
- Some of these units ("whole blood") were transfused directly into patients (e.g., to replace blood lost by trauma or during surgery).
- Most were further fractionated into components, including:
- RBCs. When refrigerated these can be used for up to 42 days.
- platelets. These must be stored at room temperature and thus can be saved for only 5 days.
- plasma. This can be frozen and stored for up to a year.
safety of donated blood
A variety of infectious agents can be present in blood.
- viruses (e.g., HIV-1, hepatitis B and C, HTLV, West Nile virus
- bacteria like the spirochete of syphilis
- protozoans like the agents of malaria and babesiosis
- prions (e.g., the agent of variant Crueutzfeldt-Jakob disease)
and could be transmitted to recipients. To minimize these risks,
- donors are questioned about their possible exposure to these agents;
- each unit of blood is tested for a variety of infectious agents.
Most of these tests are performed with enzyme immunoassays (EIA) and detect antibodies against the agents. blood is now also checked for the presence of the RNA of these RNA viruses:
- HIV-1
- hepatitis C
- West Nile virus
- by the so-called nucleic acid-amplification test (NAT).
- it's the individual pressure exerted independently by a particular gas within a mixture of gasses. The air we breath is a mixture of gasses: primarily nitrogen, oxygen, & carbon dioxide. So, the air you blow into a balloon creates pressure that causes the balloon to expand (& this pressure is generated as all the molecules of nitrogen, oxygen, & carbon dioxide move about & collide with the walls of the balloon). However, the total pressure generated by the air is due in part to nitrogen, in part to oxygen, & in part to carbon dioxide. That part of the total pressure generated by oxygen is the 'partial pressure' of oxygen, while that generated by carbon dioxide is the 'partial pressure' of carbon dioxide. A gas's partial pressure, therefore, is a measure of how much of that gas is present (e.g., in the blood or alveoli).
- the partial pressure exerted by each gas in a mixture equals the total pressure times the fractional composition of the gas in the mixture. So, given that total atmospheric pressure (at sea level) is about 760 mm Hg and, further, that air is about 21% oxygen, then the partial pressure of oxygen in the air is 0.21 times 760 mm Hg or 160 mm Hg.
White Blood Cells (leukocytes)
White blood cells
- are much less numerous than red (the ratio between the two is around 1:700),
- have nuclei,
- participate in protecting the body from infection,
- consist of lymphocytes and monocytes with relatively clear cytoplasm, and three types of granulocytes, whose cytoplasm is filled with granules.
Lymphocytes: There are several kinds of lymphocytes, each with different functions to perform , 25% of wbc The most common types of lymphocytes are
- B lymphocytes ("B cells"). These are responsible for making antibodies.
- T lymphocytes ("T cells"). There are several subsets of these:
- inflammatory T cells that recruit macrophages and neutrophils to the site of infection or other tissue damage
- cytotoxic T lymphocytes (CTLs) that kill virus-infected and, perhaps, tumor cells
- helper T cells that enhance the production of antibodies by B cells
Although bone marrow is the ultimate source of lymphocytes, the lymphocytes that will become T cells migrate from the bone marrow to the thymus where they mature. Both B cells and T cells also take up residence in lymph nodes, the spleen and other tissues where they
- encounter antigens;
- continue to divide by mitosis;
- mature into fully functional cells.
Monocytes : also originate in marrow, spend up to 20 days in the circulation, then travel to the tissues where they become macrophages. Macrophages are the most important phagocyte outside the circulation. Monocytes are about 9% of normal wbc count
Macrophages are large, phagocytic cells that engulf
- foreign material (antigens) that enter the body
- dead and dying cells of the body.
Neutrophils
The most abundant of the WBCs. about 65% of normal white count These cells spend 8 to 10 days in the circulation making their way to sites of infection etc Neutrophils squeeze through the capillary walls and into infected tissue where they kill the invaders (e.g., bacteria) and then engulf the remnants by phagocytosis. They have two types of granules: the most numerous are specific granules which contain bactericidal agents such as lysozyme; the azurophilic granules are lysosomes containing peroxidase and other enzymes
Eosinophils : The number of eosinophils in the blood is normally quite low (0–450/µl). However, their numbers increase sharply in certain diseases, especially infections by parasitic worms. Eosinophils are cytotoxic, releasing the contents of their granules on the invader.
Basophils : rare except during infections where these cells mediate inflammation by secreting histamine and heparan sulfate (related to the anticoagulant heparin). Histamine makes blood vessels permeable and heparin inhibits blood clotting. Basophils are functionally related to mast cells. . The mediators released by basophils also play an important part in some allergic responses such as hay fever and an anaphylactic response to insect stings.
Thrombocytes (platelets):
Thrombocytes are cellular derivatives from megakaryocytes which contain factors responsible for the intrinsic clotting mechanism. They represent fragmented cells which contain residual organelles including rough endoplasmic reticulum and Golgi apparati. They are only 2-microns in diameter, are seen in peripheral blood either singly or, often, in clusters, and have a lifespan of 10 days.
The small intestine
Digestion within the small intestine produces a mixture of disaccharides, peptides, fatty acids, and monoglycerides. The final digestion and absorption of these substances occurs in the villi, which line the inner surface of the small intestine.
This scanning electron micrograph (courtesy of Keith R. Porter) shows the villi carpeting the inner surface of the small intestine.
The crypts at the base of the villi contain stem cells that continuously divide by mitosis producing
- more stem cells
- cells that migrate up the surface of the villus while differentiating into
- columnar epithelial cells (the majority). They are responsible for digestion and absorption.
- goblet cells, which secrete mucus;
- endocrine cells, which secrete a variety of hormones;
- Paneth cells, which secrete antimicrobial peptides that sterilize the contents of the intestine.
All of these cells replace older cells that continuously die by apoptosis.
The villi increase the surface area of the small intestine to many times what it would be if it were simply a tube with smooth walls. In addition, the apical (exposed) surface of the epithelial cells of each villus is covered with microvilli (also known as a "brush border"). Thanks largely to these, the total surface area of the intestine is almost 200 square meters, about the size of the singles area of a tennis court and some 100 times the surface area of the exterior of the body.
Incorporated in the plasma membrane of the microvilli are a number of enzymes that complete digestion:
- aminopeptidases attack the amino terminal (N-terminal) of peptides producing amino acids.
- disaccharidasesThese enzymes convert disaccharides into their monosaccharide subunits.
- maltase hydrolyzes maltose into glucose.
- sucrase hydrolyzes sucrose (common table sugar) into glucose and fructose.
- lactase hydrolyzes lactose (milk sugar) into glucose and galactose.
Fructose simply diffuses into the villi, but both glucose and galactose are absorbed by active transport.
- fatty acids and monoglycerides. These become resynthesized into fats as they enter the cells of the villus. The resulting small droplets of fat are then discharged by exocytosis into the lymph vessels, called lacteals, draining the villi.
The defecation reflex:
As a result of the mass movements, pressure is exerted on the rectum and on the internal anal sphincter, which is smooth muscle, resulting in its involuntary relaxation. Afferent impulses are sent to the brain indicating the need to defecate. The external sphincter is voluntary muscle and is controlled by the voluntary nervous system. This sphincter is relaxed along with contraction of the rectal and abdominal muscles in the defecation reflex
The Nerve Impulse
When a nerve is stimulated the resting potential changes. Examples of such stimuli are pressure, electricity, chemicals, etc. Different neurons are sensitive to different stimuli(although most can register pain). The stimulus causes sodium ion channels to open. The rapid change in polarity that moves along the nerve fiber is called the "action potential." In order for an action potential to occur, it must reach threshold. If threshold does not occur, then no action potential can occur. This moving change in polarity has several stages:
Depolarization
The upswing is caused when positively charged sodium ions (Na+) suddenly rush through open sodium gates into a nerve cell. The membrane potential of the stimulated cell undergoes a localized change from -55 millivolts to 0 in a limited area. As additional sodium rushes in, the membrane potential actually reverses its polarity so that the outside of the membrane is negative relative to the inside. During this change of polarity the membrane actually develops a positive value for a moment(+30 millivolts). The change in voltage stimulates the opening of additional sodium channels (called a voltage-gated ion channel). This is an example of a positive feedback loop.
Repolarization
The downswing is caused by the closing of sodium ion channels and the opening of potassium ion channels. Release of positively charged potassium ions (K+) from the nerve cell when potassium gates open. Again, these are opened in response to the positive voltage--they are voltage gated. This expulsion acts to restore the localized negative membrane potential of the cell (about -65 or -70 mV is typical for nerves).
Hyperpolarization
When the potassium ions are below resting potential (-90 mV). Since the cell is hyper polarized, it goes to a refractory phrase.
Refractory phase
The refractory period is a short period of time after the depolarization stage. Shortly after the sodium gates open, they close and go into an inactive conformation. The sodium gates cannot be opened again until the membrane is repolarized to its normal resting potential. The sodium-potassium pump returns sodium ions to the outside and potassium ions to the inside. During the refractory phase this particular area of the nerve cell membrane cannot be depolarized. This refractory area explains why action potentials can only move forward from the point of stimulation.
Factors that affect sensitivity and speed
Sensitivity
Increased permeability of the sodium channel occurs when there is a deficit of calcium ions. When there is a deficit of calcium ions (Ca+2) in the interstitial fluid, the sodium channels are activated (opened) by very little increase of the membrane potential above the normal resting level. The nerve fiber can therefore fire off action potentials spontaneously, resulting in tetany. This could be caused by the lack of hormone from parathyroid glands. It could also be caused by hyperventilation, which leads to a higher pH, which causes calcium to bind and become unavailable.
Speed of Conduction
This area of depolarization/repolarization/recovery moves along a nerve fiber like a very fast wave. In myelinated fibers, conduction is hundreds of times faster because the action potential only occurs at the nodes of Ranvier (pictured below in 'types of neurons') by jumping from node to node. This is called "saltatory" conduction. Damage to the myelin sheath by the disease can cause severe impairment of nerve cell function. Some poisons and drugs interfere with nerve impulses by blocking sodium channels in nerves. See discussion on drug at the end of this outline.