Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

  • There Are 12 Pairs of Cranial Nerves

  • The 12 pairs of cranial nerves emerge mainly from the ventral surface of the brain
  • Most attach to the medulla, pons or midbrain
  • They leave the brain through various fissures and foramina of the skull
  •  Nerve

     Name

     Sensory

     Motor

     Autonomic
    Parasympathetic

     I

     Olfactory

     Smell

     

     

     II

     Optic

     Vision

     

     

     III

    Oculomotor

     Proprioception

     4 Extrinsic eye muscles

      Pupil constriction
    Accomodation
    Focusing

     IV

     Trochlear

     Proprioception

     1 Extrinsic eye muscle (Sup.oblique)

     

     V

     Trigeminal

     Somatic senses
    (Face, tongue)

     Chewing

     

     VI

    Abducens

     Proprioception

     1 Extrinsic eye muscle (Lat. rectus)

     

     VII

     Facial

     Taste
    Proprioception
     

     Muscles of facial expression

     Salivary glands
    Tear glands

     VIII

     Auditory
    (Vestibulocochlear)

    Hearing, Balance

     

     

     IX

     Glossopharyngeal

     Taste
    Blood gases

     Swallowing
    Gagging

     Salivary glands

     X

     Vagus

    Blood pressure
    Blood gases
     Taste

     Speech
    Swallowing Gagging

    Many visceral organs
    (heart, gut, lungs)

     XI

     Spinal acessory

     Proprioception

     Neck muscles:
    Sternocleidomastoid
    Trapezius

     

     XII

     Hypoglossal

     Proprioception

     Tongue muscles
    Speech

     

     

  • Many of the functions that make us distinctly human are controlled by cranial nerves: special senses, facial expression, speech.
  • Cranial Nerves Contain Sensory, Motor and Parasympathetic Fibers

     

Alveolar Ventilation: is the volume of air of new air , entering the alveoli and adjacent gas exchange areas each minute . It equals to multiplying of respiratory rate by ( tidal volume - dead space).
Va = R rate X (TV- DsV)
     = 12 X ( 500-150)
     = 4200 ml of air.

Serum Lipids

 

LIPID

Typical values (mg/dl)

Desirable (mg/dl)

Cholesterol (total)

170–210

<200

LDL cholesterol

60–140

<100

HDL cholesterol

35–85

>40

Triglycerides

40–160

<160

 

  • Total cholesterol is the sum of
    • HDL cholesterol
    • LDL cholesterol and
    • 20% of the triglyceride value
  • Note that
    • high LDL values are bad, but
    • high HDL values are good.
  • Using the various values, one can calculate a
    cardiac risk ratio = total cholesterol divided by HDL cholesterol
  • A cardiac risk ratio greater than 7 is considered a warning.

Maintenance of Homeostasis


The kidneys maintain the homeostasis of several important internal conditions by controlling the excretion of substances out of the body. 

Ions. The kidney can control the excretion of potassium, sodium, calcium, magnesium, phosphate, and chloride ions into urine. In cases where these ions reach a higher than normal concentration, the kidneys can increase their excretion out of the body to return them to a normal level. Conversely, the kidneys can conserve these ions when they are present in lower than normal levels by allowing the ions to be reabsorbed into the blood during filtration. (See more about ions.)
 
pH. The kidneys monitor and regulate the levels of hydrogen ions (H+) and bicarbonate ions in the blood to control blood pH. H+ ions are produced as a natural byproduct of the metabolism of dietary proteins and accumulate in the blood over time. The kidneys excrete excess H+ ions into urine for elimination from the body. The kidneys also conserve bicarbonate ions, which act as important pH buffers in the blood.
 
Osmolarity. The cells of the body need to grow in an isotonic environment in order to maintain their fluid and electrolyte balance. The kidneys maintain the body’s osmotic balance by controlling the amount of water that is filtered out of the blood and excreted into urine. When a person consumes a large amount of water, the kidneys reduce their reabsorption of water to allow the excess water to be excreted in urine. This results in the production of dilute, watery urine. In the case of the body being dehydrated, the kidneys reabsorb as much water as possible back into the blood to produce highly concentrated urine full of excreted ions and wastes. The changes in excretion of water are controlled by antidiuretic hormone (ADH). ADH is produced in the hypothalamus and released by the posterior pituitary gland to help the body retain water.
 
Blood Pressure. The kidneys monitor the body’s blood pressure to help maintain homeostasis. When blood pressure is elevated, the kidneys can help to reduce blood pressure by reducing the volume of blood in the body. The kidneys are able to reduce blood volume by reducing the reabsorption of water into the blood and producing watery, dilute urine. When blood pressure becomes too low, the kidneys can produce the enzyme renin to constrict blood vessels and produce concentrated urine, which allows more water to remain in the blood.

The Body Regulates pH in Several Ways

  • Buffers are weak acid mixtures (such as bicarbonate/CO2) which minimize pH change
    • Buffer is always a mixture of 2 compounds
      • One compound takes up H ions if there are too many (H acceptor)
      • The second compound releases H ions if there are not enough (H donor)
    • The strength of a buffer is given by the buffer capacity
      • Buffer capacity is proportional to the buffer concentration and to a parameter known as the pK
    • Mouth bacteria produce acids which attack teeth, producing caries (cavities). People with low buffer capacities in their saliva have more caries than those with high buffer capacities.
  • CO2 gas (a potential acid) is eliminated by the lungs
  • Other acids and bases are eliminated by the kidneys

White Blood Cells (leukocytes)

White blood cells

  • are much less numerous than red (the ratio between the two is around 1:700),
  • have nuclei,
  • participate in protecting the body from infection,
  • consist of lymphocytes and monocytes with relatively clear cytoplasm, and three types of granulocytes, whose cytoplasm is filled with granules.

Lymphocytes: There are several kinds of lymphocytes, each with different functions to perform , 25% of wbc The most common types of lymphocytes are

  • B lymphocytes ("B cells"). These are responsible for making antibodies.
  • T lymphocytes ("T cells"). There are several subsets of these:
    • inflammatory T cells that recruit macrophages and neutrophils to the site of infection or other tissue damage
    • cytotoxic T lymphocytes (CTLs) that kill virus-infected and, perhaps, tumor cells
    • helper T cells that enhance the production of antibodies by B cells

Although bone marrow is the ultimate source of lymphocytes, the lymphocytes that will become T cells migrate from the bone marrow to the thymus where they mature. Both B cells and T cells also take up residence in lymph nodes, the spleen and other tissues where they

  • encounter antigens;
  • continue to divide by mitosis;
  • mature into fully functional cells.

Monocytes : also originate in marrow, spend up to 20 days in the circulation, then travel to the tissues where they become macrophages. Macrophages are the most important phagocyte outside the circulation. Monocytes are about 9% of normal wbc count

Macrophages are large, phagocytic cells that engulf

  • foreign material (antigens) that enter the body
  • dead and dying cells of the body.

Neutrophils

The most abundant of the WBCs. about 65% of normal white count  These cells spend 8 to 10 days in the circulation making their way to sites of infection etc  Neutrophils squeeze through the capillary walls and into infected tissue where they kill the invaders (e.g., bacteria) and then engulf the remnants by phagocytosis. They have two types of granules: the most numerous are specific granules which contain bactericidal agents such as lysozyme; the azurophilic granules are lysosomes containing peroxidase and other enzymes

Eosinophils : The number of eosinophils in the blood is normally quite low (0–450/µl). However, their numbers increase sharply in certain diseases, especially infections by parasitic worms. Eosinophils are cytotoxic, releasing the contents of their granules on the invader.

Basophils : rare except during infections where these cells mediate inflammation by secreting histamine and heparan sulfate (related to the anticoagulant heparin). Histamine makes blood vessels permeable and heparin inhibits blood clotting. Basophils are functionally related to mast cells.  . The mediators released by basophils also play an important part in some allergic responses such as hay fever and an anaphylactic response to insect stings.

Thrombocytes (platelets):

Thrombocytes are cellular derivatives from megakaryocytes which contain factors responsible for the intrinsic clotting mechanism. They represent fragmented cells  which contain residual organelles including rough endoplasmic reticulum and Golgi apparati. They are only 2-microns in diameter, are seen in peripheral blood either singly or, often, in clusters, and have a lifespan of 10 days.

Function of Blood

  • transport through the body of
    • oxygen and carbon dioxide
    • food molecules (glucose, lipids, amino acids)
    • ions (e.g., Na+, Ca2+, HCO3)
    • wastes (e.g., urea)
    • hormones
    • heat
  • defense of the body against infections and other foreign materials. All the WBCs participate in these defenses

 

Explore by Exams