Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Characteristics of Facilitated Diffusion & Active Transport - both require the use of carriers that are specific to particular substances (that is, each type of carrier can 'carry' one type of substance) and both can exhibit saturation (movement across a membrane is limited by number of carriers & the speed with which they move materials

Platelets

Platelets are cell fragments produced from megakaryocytes.

Blood normally contains 150,000 to 350,000 per microliter (µl). If this value should drop much below 50,000/µl, there is a danger of uncontrolled bleeding. This is because of the essential role that platelets have in blood clotting.

When blood vessels are damaged, fibrils of collagen are exposed.

  • von Willebrand factor links the collagen to platelets forming a plug of platelets there.
  • The bound platelets release ADP and thromboxane A2 which recruit and activate still more platelets circulating in the blood.
  • (This role of thromboxane accounts for the beneficial effect of low doses of aspirin a cyclooxygenase inhibitor in avoiding heart attacks.)

ReoPro is a monoclonal antibody directed against platelet receptors. It inhibits platelet aggregation and appears to reduce the risk that "reamed out" coronary arteries (after coronary angioplasty) will plug up again.

Transport of Carbon Dioxide

A.    Dissolved in Blood Plasma (7-10%)

B.    Bound to Hemoglobin (20-30%)

1.    carbaminohemoglobin - Carb Dioxide binds to an amino acid on the polypeptide chains

2.    Haldane Effect - the less oxygenated blood is, the more Carb Diox it can carry

a.    tissues - as Oxygen is unloaded, affinity for Carb Dioxide increases
b.    lungs - as Oxygen is loaded, affinity for Carb Dioxide decreases, allowing it to be released

C.    Bicarbonate Ion Form in Plasma (60-70%)

1.    Carbon Dioxide combines with water to form Bicarbonate

CO2 + H2O <==> H2CO3 <==> H+ + HCO3-

2.    carbonic anhydrase - enzyme in RBCs that catalyzes this reaction in both directions

a.    tissues - catalyzes formation of Bicarbonate
b.    lungs - catalyzes formation of Carb Dioxide

3.    Bohr Effect - formation of Bicarbonate (through Carbonic Acid) leads to LOWER pH (H+ increase), and more unloading of Oxygen to tissues

a.    since hemoglobin "buffers" to H+, the actual pH of blood does not change much

4.    Chloride Shift - chloride ions move in opposite direction of the entering/leaving Bicarbonate, to prevent osmotic problems with RBCs

D.    Carbon Dioxide Effects on Blood pH

1.    carbonic acid-bicarbonate buffer system
    
low pH       → HCO3- binds to H+
high pH     →   H2CO3 releases H+
    
2.     low shallow breaths    → HIGH Carb Dioxide    → LOW pH (higher H+)
3.     rapid deep breaths     → LOW Carb Dioxide   → HIGH pH (lower H+)

GENERAL SOMATIC AFFERENT (GSA) PATHWAYS FROM THE BODY

Pain and Temperature

Pain and temperature information from general somatic receptors is conducted over small-diameter (type A delta and type C) GSA fibers of the spinal nerves into the posterior horn of the spinal cord gray matter .

Fast and Slow Pain

Fast pain, often called sharp or pricking pain, is usually conducted to the CNS over type A delta fibers.

Slow pain, often called burning pain, is conducted to the CNS over smaller-diameter type C fibers.

Touch and Pressure

Touch can be subjectively described as discriminating or crude.

Discriminating (epicritic) touch implies an awareness of an object's shape, texture, three-dimensional qualities, and other fine points. Ability to recognize familiar objects simply by tactile manipulation.

The conscious awareness of body position and movement is called the kinesthetic sens

Crude (protopathic) touch,  lacks the fine discrimination described above and doesn't generally give enough information to the brain to enable it to recognize a familiar object by touch alone.

Subconscious Proprioception

Most of the subconscious proprioceptive input is shunted to the cerebellum.

Posterior Funiculus Injury

Certain clinical signs are associated with injury to the dorsal columns.

 As might be expected, these are generally caused by impairment to the kinesthetic sense and discriminating touch and pressure pathways.

 They include

 (1) the inability to recognize limb position,

 (2) as­tereognosis,

 (3) loss of two-point discrimination,

 (4) loss of vibratory sense, and

 (5) a positive Romberg sign.

Astereognosis is the inability to recognize familiar objects by touch alone. When asked to stand erect with feet together and eyes closed, a person with dorsal column damage may sway and fall. This is a posi­tive Romberg sign.

(RDS) Respiratory distress of Newborn
1.    hyaline membrane disease of the new born
2.    decrease in surfactant, Weak, Abnormal complience of chest wall
3.    Small alveoli, difficult to inflate, Alveoli tent to collapse, many of varied sizes
4.    decrease in O2 diffusion area, lung difficult to expand, in compliance

Damage to Spinal Nerves and Spinal Cord

Damage

Possible cause of damage

Symptoms associated with innervated area

Peripheral nerve

Mechanical injury

Loss of muscle tone. Loss of reflexes. Flaccid paralysis. Denervation atrophy. Loss of sensation

Posterior root

Tabes dorsalis

Paresthesia. Intermittent sharp pains. Decreased sensitivity to pain. Loss of reflexes. Loss of sensation. Positive Romberg sign. High stepping and slapping of feet.

Anterior Horn

Poliomyelitis

Loss of muscle tone.  Loss of reflexes. Flaccid paralysis.  Denervation atrophy

Lamina X (gray matter)

Syringomyelia

Bilateral loss of pain and temperature sense only at afflicted cord level. Sensory dissociation. No sensory impairment below afflicted level

Anterior horn and lateral corticospinal tract

Amyotrophic lateral sclerosis

Muscle weakness.  Muscle atrophy. Fasciculations of hand and arm muscles. Spastic paralysis

Posterior and lateral funiculi

Subacute combined degeneration

Loss of position sense. Loss of vibratory sense. Positive Romberg sign. Muscle weakness. Spasticity. Hyperactive tendon reflexes. Positive Babinski sign.

Hemisection of the spinal cord

Mechanical injury

Brown-Sequard syndrome

Below cord level on injured side

Flaccid paralysis. Hyperactive tendon reflexes. Loss of position sense. Loss of vibratory sense. Tactile impairment

Below cord level on opposite side beginning one or two segments below injury

Loss of pain and temperature

Graded Contractions and Muscle Metabolism

The muscle twitch is a single response to a single stimulus. Muscle twitches vary in length according to the type of muscle cells involved. .

 

Fast twitch muscles such as those which move the eyeball have twitches which reach maximum contraction in 3 to 5 ms (milliseconds).  [superior eye] and [lateral eye] These muscles were mentioned earlier as also having small numbers of cells in their motor units for precise control.

The cells in slow twitch muscles like the postural muscles (e.g. back muscles, soleus) have twitches which reach maximum tension in 40 ms or so.

 The muscles which exhibit most of our body movements have intermediate twitch lengths of 10 to 20 ms.

The latent period, the period of a few ms encompassing the chemical and physical events preceding actual contraction.

This is not the same as the absolute refractory period, the even briefer period when the sarcolemma is depolarized and cannot be stimulated. The relative refractory period occurs after this when the sarcolemma is briefly hyperpolarized and requires a greater than normal stimulus

Following the latent period is the contraction phase in which the shortening of the sarcomeres and cells occurs. Then comes the relaxation phase, a longer period because it is passive, the result of recoil due to the series elastic elements of the muscle.

We do not use the muscle twitch as part of our normal muscle responses. Instead we use graded contractions, contractions of whole muscles which can vary in terms of their strength and degree of contraction. In fact, even relaxed muscles are constantly being stimulated to produce muscle tone, the minimal graded contraction possible.

Muscles exhibit graded contractions in two ways:

1) Quantal Summation or Recruitment - this refers to increasing the number of cells contracting. This is done experimentally by increasing the voltage used to stimulate a muscle, thus reaching the thresholds of more and more cells. In the human body quantal summation is accomplished by the nervous system, stimulating increasing numbers of cells or motor units to increase the force of contraction.

2) Wave Summation ( frequency summation) and Tetanization- this results from stimulating a muscle cell before it has relaxed from a previous stimulus. This is possible because the contraction and relaxation phases are much longer than the refractory period. This causes the contractions to build on one another producing a wave pattern or, if the stimuli are high frequency, a sustained contraction called tetany or tetanus. (The term tetanus is also used for an illness caused by a bacterial toxin which causes contracture of the skeletal muscles.) This form of tetanus is perfectly normal and in fact is the way you maintain a sustained contraction.

Treppe is not a way muscles exhibit graded contractions. It is a warmup phenomenon in which when muscle cells are initially stimulated when cold, they will exhibit gradually increasing responses until they have warmed up. The phenomenon is due to the increasing efficiency of the ion gates as they are repeatedly stimulated. Treppe can be differentiated from quantal summation because the strength of stimulus remains the same in treppe, but increases in quantal summation

Length-Tension Relationship: Another way in which the tension of a muscle can vary is due to the length-tension relationship. This relationship expresses the characteristic that within about 10% the resting length of the muscle, the tension the muscle exerts is maximum. At lengths above or below this optimum length the tension decreases.

Explore by Exams