NEET MDS Lessons
Physiology
-
The Autonomic Nervous System (ANS) Controls the Body's Internal Environment in a Coordinated Manner
- The ANS helps control the heart rate, blood pressure, digestion, respiration, blood pH and other bodily functions through a series of complex reflex actions
- These controls are done automatically, below the conscious level
- To exert this control the activities of many different organs must be coordinated so they work to accomplish the same goal
- In the ANS there are 2 nerves between the central nervous system (CNS) and the organ. The nerve cell bodies for the second nerve are organized into ganglia:
- CNS -> Preganglionic nerve -> Ganglion -> Postganglionic nerve -> Organ
- At each junction neurotransmitters are released and carry the signal to the next nerve or organ.
-
The ANS has 2 Divisions, Sympathetic and Parasympathetic
- Comparison of the 2 systems:
-
Anatomical
LocationPreganglionic
FibersPostganglionic
FibersTransmitter
(Ganglia)Transmitter
(Organs)Sympathetic
Thoracic/
LumbarShort
Long
ACh
NE
Parasympathetic
Cranial/
SacralLong
Short
ACh
ACh
The Sympathetic is the "Fight or Flight" Branch of the ANS
- Emergency situations, where the body needs a sudden burst of energy, are handled by the sympathetic system
- The sympathetic system increases cardiac output and pulmonary ventilation, routes blood to the muscles, raises blood glucose and slows down digestion, kidney filtration and other functions not needed during emergencies
- Whole sympathetic system tends to "go off" together
- In a controlled environment the sympathetic system is not required for life, but it is essential for any stressful situation
-
The Parasympathetic is the Rest and Digest Branch of the ANS
- The parasympathetic system promotes normal maintenance of the body- acquiring building blocks and energy from food and getting rid of the wastes
- It promotes secretions and mobility of different parts of the digestive tract.
- Also involved in urination, defecation.
- Does not "go off" together; activities initiated when appropriate
- The vagus nerve (cranial number 10) is the chief parasympathetic nerve
- Other cranial parasympathetic nerves are: III (oculomotor), VII (facial) and IX (glossopharyngeal)
-
The Hypothalamus Has Central Control of the ANS
- The hypothalamus is involved in the coordination of ANS responses,
- One section of the hypothalamus seems to control many of the "fight or flight" responses; another section favors "rest and digest" activities
-
The Adrenal Medulla is an Extension of the Sympathetic Nervous System
- The adrenal medulla behaves like a combined autonomic ganglion and postsynaptic sympathetic nerve (see diagram above)
- Releases both norepinephrine and epinephrine in emergency situations
- Releases a mixture of epinephrine (E = 80%) and norepinephrine (NE = 20%)
- Epinephrine = adrenaline
- This action is under control of the hypothalamus
-
Sympathetic & Parasympathetic Systems
- Usually (but not always) both sympathetic and parasympathetic nerves go to an organ and have opposite effects
- You can predict about 90% of the sympathetic and parasympathetic responses using the 2 phrases: "Fight or Flight" and "Rest and Digest".
- Special cases:
- Occasionally the 2 systems work together: in sexual intercourse the parasympathetic promotes erection and the sympathetic produces ejaculation
- Eye: the sympathetic response is dilation and relaxation of the ciliary muscle for far vision (parasympathetic does the opposite)
- Urination: the parasympathetic system relaxes the sphincter muscle and promotes contraction of muscles of the bladder wall -> urination (sympathetic blocks urination)
- Defecation: the parasympathetic system causes relaxation of the anal sphincter and stimulates colon and rectum to contract -> defecation (sympathetic blocks defecation)
-
Organ
Parasympathetic Response
"Rest and Digest"Sympathetic Response
"Fight or Flight"Heart
(baroreceptor reflex)Decreased heart rate
Cardiac output decreasesIncreased rate and strength of contraction
Cardiac output increasesLung Bronchioles
Constriction
Dilation
Liver Glycogen
No effect
Glycogen breakdown
Blood glucose increasesFat Tissue
No effect
Breakdown of fat
Blood fatty acids increaseBasal Metabolism
No effect
Increases ~ 2X
Stomach
Increased secretion of HCl & digestive enzymes
Increased motilityDecreased secretion
Decreased motilityIntestine
Increased secretion of HCl & digestive enzymes
Increased motilityDecreased secretion
Decreased motilityUrinary bladder
Relaxes sphincter
Detrusor muscle contracts
Urination promotedConstricts sphincter
Relaxes detrusor
Urination inhibitedRectum
Relaxes sphincter
Contracts wall muscles
Defecation promotedConstricts sphincter
Relaxes wall muscles
Defecation inhibitedEye
Iris constricts
Adjusts for near visionIris dilates
Adjusts for far visionMale Sex Organs
Promotes erection
Promotes ejaculation
The Parathyroid Glands
The parathyroid glands are 4 tiny structures embedded in the rear surface of the thyroid gland. They secrete parathyroid hormone (PTH) a polypeptide of 84 amino acids. PTH increases the concentration of Ca2+ in the blood in three ways. PTH promotes
- release of Ca2+ from the huge reservoir in the bones. (99% of the calcium in the body is incorporated in our bones.)
- reabsorption of Ca2+ from the fluid in the tubules in the kidneys
- absorption of Ca2+ from the contents of the intestine (this action is mediated by calcitriol, the active form of vitamin D.)
PTH also regulates the level of phosphate in the blood. Secretion of PTH reduces the efficiency with which phosphate is reclaimed in the proximal tubules of the kidney causing a drop in the phosphate concentration of the blood.
Hyperparathyroidism
Elevate the level of PTH causing a rise in the level of blood Ca2+ .Calcium may be withdrawn from the bones that they become brittle and break.
Patients with this disorder have high levels of Ca2+ in their blood and excrete small amounts of Ca2+ in their urine. This causes hyperparathyroidism.
Hypoparathyroidism
This disorder have low levels of Ca2+ in their blood and excrete large amounts of Ca2+ in their urine.
Each hormone in the body is unique. Each one is different in it's chemical composition, structure, and action. With respect to their chemical structure, hormones may be classified into three groups: amines, proteins, and steroids.
Amines- these simple hormones are structural variation of the amino acid tyrosine. This group includes thyroxine from the thyroid gland and epinephrine and norepinephrine from the adrenal medulla.
Proteins- these hormones are chains of amino acids. Insulin from the pancreas, growth hormone from the anterior pituitary gland, and calcitonin from the thyroid gland are all proteins. Short chains of amino acids are called peptides. Antidiuretic hormone and oxytocin, synthesized by the hypothalamus, are peptide hormones.
Steroids- cholesterol is the precursor for the steroid hormones, which include cortisol and aldosterone from the adrenal cortex, estrogen and progesterone from the ovaries, and testosterone from the testes.
The pituitary gland is pea-sized structure located at the base of the brain. In humans, it consists of two lobes:
- the Anterior Lobe and
- the Posterior Lobe
The Anterior Lobe
The anterior lobe contains six types of secretory cells All of them secrete their hormone in response to hormones reaching them from the hypothalamus of the brain.
Thyroid Stimulating Hormone (TSH)
TSH (also known as thyrotropin) is a glycoprotein The secretion of TSH is
- stimulated by the arrival of thyrotropin releasing hormone (TRH) from the hypothalamus.
- inhibited by the arrival of somatostatin from the hypothalamus.
TSH stimulates the thyroid gland to secrete its hormone thyroxine (T4).
Some develop antibodies against their own TSH receptors making more T4 causing hyperthyroidism. The condition is called thyrotoxicosis or Graves' disease.
Hormone deficiencies
A deficiency of TSH causes hypothyroidism: inadequate levels of T4 (and thus of T3 )..
Follicle-Stimulating Hormone (FSH)
FSH is a heterodimeric glycoprotein Synthesis and release of FSH is triggered by the arrival from the hypothalamus of gonadotropin-releasing hormone (GnRH).
FSH in females :In sexually-mature females, FSH (assisted by LH) acts on the follicle to stimulate it to release estrogens.
FSH in males :In mature males, FSH acts on spermatogonia stimulating (with the aid of testosterone) the production of sperm.
Luteinizing Hormone (LH)
LH is synthesized within the same pituitary cells as FSH and under the same stimulus (GnRH). It is also a heterodimeric glycoprotein
LH in females
In sexually-mature females, LH
- stimulates the follicle to secrete estrogen in the first half of the menstrual cycle
- a surge of LH triggers the completion of meiosis I of the egg and its release (ovulation) in the middle of the cycle
- stimulates the now-empty follicle to develop into the corpus luteum, which secretes progesterone during the latter half of the menstrual cycle.
LH in males
LH acts on the interstitial cells (also known as Leydig cells) of the testes stimulating them to synthesize and secrete the male sex hormone, testosterone.
LH in males is also known as interstitial cell stimulating hormone (ICSH).
Prolactin (PRL)
Prolactin is a protein of 198 amino acids. During pregnancy it helps in the preparation of the breasts for future milk production. After birth, prolactin promotes the synthesis of milk.
Prolactin secretion is
- stimulated by TRH
- repressed by estrogens and dopamine.
Growth Hormone (GH)
- Human growth hormone (also called somatotropin) is a protein
- The GH-secreting cells are stimulated to synthesize and release GH by the intermittent arrival of growth hormone releasing hormone (GHRH) from the hypothalamus. GH promotes body growth
In Child
- hyposecretion of GH produces dwarfism
- hypersecretion leads to gigantism
In adults, a hypersecretion of GH leads to acromegaly.
ACTH — the adrenocorticotropic hormone
ACTH acts on the cells of the adrenal cortex, stimulating them to produce
- glucocorticoids, like cortisol
- mineralocorticoids, like aldosterone
- androgens (male sex hormones, like testosterone
Hypersecretion of ACTH cause of Cushing's disease.
Transport of Carbon Dioxide
A. Dissolved in Blood Plasma (7-10%)
B. Bound to Hemoglobin (20-30%)
1. carbaminohemoglobin - Carb Dioxide binds to an amino acid on the polypeptide chains
2. Haldane Effect - the less oxygenated blood is, the more Carb Diox it can carry
a. tissues - as Oxygen is unloaded, affinity for Carb Dioxide increases
b. lungs - as Oxygen is loaded, affinity for Carb Dioxide decreases, allowing it to be released
C. Bicarbonate Ion Form in Plasma (60-70%)
1. Carbon Dioxide combines with water to form Bicarbonate
CO2 + H2O <==> H2CO3 <==> H+ + HCO3-
2. carbonic anhydrase - enzyme in RBCs that catalyzes this reaction in both directions
a. tissues - catalyzes formation of Bicarbonate
b. lungs - catalyzes formation of Carb Dioxide
3. Bohr Effect - formation of Bicarbonate (through Carbonic Acid) leads to LOWER pH (H+ increase), and more unloading of Oxygen to tissues
a. since hemoglobin "buffers" to H+, the actual pH of blood does not change much
4. Chloride Shift - chloride ions move in opposite direction of the entering/leaving Bicarbonate, to prevent osmotic problems with RBCs
D. Carbon Dioxide Effects on Blood pH
1. carbonic acid-bicarbonate buffer system
low pH → HCO3- binds to H+
high pH → H2CO3 releases H+
2. low shallow breaths → HIGH Carb Dioxide → LOW pH (higher H+)
3. rapid deep breaths → LOW Carb Dioxide → HIGH pH (lower H+)
Exchange of gases:
- External respiration:
- exchange of O2 & CO2 between external environment & the cells of the body
- efficient because alveoli and capillaries have very thin walls & are very abundant (your lungs have about 300 million alveoli with a total surface area of about 75 square meters)
- Internal respiration - intracellular use of O2 to make ATP
- occurs by simple diffusion along partial pressure gradients
HEART DISORDERS
- Pump failure => Alters pressure (flow) =>alters oxygen carrying capacity.
- Renin release (Juxtaglomerular cells) Kidney
- Converts Angiotensinogen => Angiotensin I
- In lungs Angiotensin I Converted => Angiotensin II
- Angiotensin II = powerful vasoconstrictor (raises pressure, increases afterload)
- stimulates thirst
- stimulates adrenal cortex to release Aldosterone
(Sodium retention, potassium loss) - stimulates kidney directly to reabsorb Sodium
- releases ADH from Posterior Pituitary
- Myocardial Infarction
- Myocardial Cells die from lack of Oxygen
- Adjacent vessels (collateral) dilate to compensate
- Intracellular Enzymes leak from dying cells (Necrosis)
- Creatine Kinase CK (Creatine Phosphokinase) 3 forms
- One isoenzyme = exclusively Heart (MB)
- CK-MB blood levels found 2-5 hrs, peak in 24 hrs
- Lactic Dehydrogenase found 6-10 hours after. points less clearly to infarction
- Serum glutamic oxaloacetic transaminase (SGOT)
- Found 6 hrs after infarction, peaks 24-48 hrs at 2 to 15 times normal,
- SGOT returns to normal after 3-4 days
- Creatine Kinase CK (Creatine Phosphokinase) 3 forms
- Myocardium weakens = Decreased CO & SV (severe - death)
- Infarct heal by fibrous repair
- Hypertrophy of undamaged myocardial cells
- Increased contractility to restore normal CO
- Improved by exercise program
- Prognosis
- 10% uncomplicated recovery
- 20% Suddenly fatal
- Rest MI not fatal immediately, 15% will die from related causes
- Congenital heart disease (Affect oxygenation of blood)
- Septal defects
- Ductus arteriosus
- Valvular heart disease
- Stenosis = cusps, fibrotic & thickened, Sometimes fused, can not open
- Regurgitation = cusps, retracted, Do not close, blood moves backwards