NEET MDS Lessons
Physiology
Conductivity :
Means ability of cardiac muscle to propagate electrical impulses through the entire heart ( from one part of the heart to another) by the excitatory -conductive system of the heart.
Excitatory conductive system of the heart involves:
1. Sinoatrial node ( SA node) : Here the initial impulses start and then conducted to the atria through the anterior inter-atrial pathway ( to the left atrium) , to the atrial muscle mass through the gap junction, and to the Atrioventricular node ( AV node ) through anterior, middle , and posterior inter-nodal pathways.
The average conductive velocity in the atria is 1m/s.
2- AV node : The electrical impulses can not be conducted directly from the atria to the ventricles , because of the fibrous skeleton , which is an electrical isolator , located between the atria and ventricles. So the only conductive way is the AV node . But there is a delay in the conduction occurs in the AV node .
This delay is due to:
- the smaller size of the nodal fiber.
- The less negative resting membrane potential
- fewer gap junctions.
There are three sites for delay:
- In the transitional fibers , that connect inter-nodal pathways with the AV node ( 0.03 ) .
- AV node itself ( 0.09 s) .
- In the penetrating portion of Bundle of Hiss ( 0.04 s) .
This delay actually allows atria to empty blood in ventricles during the cardiac cycle before the beginning of ventricular contraction , as it prevents the ventricles from the pathological high atrial rhythm.
The average velocity of conduction in the AV node is 0.02-0.05 m/s
3- Bundle of Hiss : A continuous with the AV node that passes to the ventricles through the inter-ventricular septum. It is subdivided into : Right and left bundle. The left bundle is also subdivided into two branches: anterior and posterior branches .
4- Purkinje`s fibers: large fibers with velocity of conduction 1.5-4 m/s.
the high velocity of these fibers is due to the abundant gap junctions , and to their nature as very large fibers as well.
The conduction from AV node is a one-way conduction . This prevents the re-entry of cardiac impulses from the ventricles to the atria.
Lastly: The conduction through the ventricular fibers has a velocity of 0.3-0.5 m/s.
Factors , affecting conductivity ( dromotropism) :
I. Positive dromotropic factors :
1. Sympathetic stimulation : it accelerates conduction and decrease AV delay .
2. Mild warming
3. mild hyperkalemia
4. mild ischemia
5. alkalosis
II. Negative dromotropic factors :
1. Parasympathetic stimulation
2. severe warming
3. cooling
4. Severe hyperkalemia
5. hypokalemia
6. Severe ischemia
7. acidosis
8. digitalis drugs.
Regulation of Blood Pressure by Hormones
The Kidney
One of the functions of the kidney is to monitor blood pressure and take corrective action if it should drop. The kidney does this by secreting the proteolytic enzyme renin.
- Renin acts on angiotensinogen, a plasma peptide, splitting off a fragment containing 10 amino acids called angiotensin I.
- angiotensin I is cleaved by a peptidase secreted by blood vessels called angiotensin converting enzyme (ACE) — producing angiotensin II, which contains 8 amino acids.
- angiotensin II
- constricts the walls of arterioles closing down capillary beds;
- stimulates the proximal tubules in the kidney to reabsorb sodium ions;
- stimulates the adrenal cortex to release aldosterone. Aldosterone causes the kidneys to reclaim still more sodium and thus water.
- increases the strength of the heartbeat;
- stimulates the pituitary to release the antidiuretic hormone (ADH, also known as arginine vasopressin).
All of these actions, which are mediated by its binding to G-protein-coupled receptors on the target cells, lead to an increase in blood pressure.
Structure and function of skeletal muscle.
Skeletal muscles have a belly which contains the cells and which attaches by means of tendons or aponeuroses to a bone or other tissue. An aponeurosis is a broad, flat, tendinous attachment, usually along the edge of a muscle. A muscle attaches to an origin and an insertion. The origin is the more fixed attachment, the insertion is the more movable attachment. A muscle acts to shorten, pulling the insertion toward the origin. A muscle can only pull, it cannot push.
Muscles usually come in pairs of antagonistic muscles. The muscle performing the prime movement is the agonist, the opposite acting muscle is the antagonist. When the movement reverses, the names reverse. For example, in flexing the elbow the biceps brachii is the agonist, the triceps brachii is the antagonist. When the movement changes to extension of the elbow, the triceps becomes the agonist and the biceps the antagonist. An antagonist is never totally relaxed. Its function is to provide control and damping of movement by maintaining tone against the agonist. This is called eccentric movement.
Muscles can also act as synergists, working together to perform a movement. This movement can be different from that performed when the muscles work independently. For example, the sternocleidomastoid muscles each rotate the head in a different direction. But as synergists they flex the neck.
Fixators act to keep a part from moving. For example fixators act as postural muscles to keep the spine erect and the leg and vertebral column extended when standing. Fixators such as the rhomboids and levator scapulae keep the scapula from moving during actions such as lifting with the arms.
Blood Transfusions
- Some of these units ("whole blood") were transfused directly into patients (e.g., to replace blood lost by trauma or during surgery).
- Most were further fractionated into components, including:
- RBCs. When refrigerated these can be used for up to 42 days.
- platelets. These must be stored at room temperature and thus can be saved for only 5 days.
- plasma. This can be frozen and stored for up to a year.
safety of donated blood
A variety of infectious agents can be present in blood.
- viruses (e.g., HIV-1, hepatitis B and C, HTLV, West Nile virus
- bacteria like the spirochete of syphilis
- protozoans like the agents of malaria and babesiosis
- prions (e.g., the agent of variant Crueutzfeldt-Jakob disease)
and could be transmitted to recipients. To minimize these risks,
- donors are questioned about their possible exposure to these agents;
- each unit of blood is tested for a variety of infectious agents.
Most of these tests are performed with enzyme immunoassays (EIA) and detect antibodies against the agents. blood is now also checked for the presence of the RNA of these RNA viruses:
- HIV-1
- hepatitis C
- West Nile virus
- by the so-called nucleic acid-amplification test (NAT).
Respiration occurs in three steps :
1- Mechanical ventilation : inhaling and exhaling of air between lungs and atmosphere.
2- Gas exchange : between pulmonary alveoli and pulmonary capillaries.
3- Transport of gases from the lung to the peripheral tissues , and from the peripheral tissues back to blood .
These steps are well regulated by neural and chemical regulation.
Respiratory tract is subdivided into upper and lower respiratory tract. The upper respiratory tract involves , nose , oropharynx and nasopharynx , while the lower respiratory tract involves larynx , trachea , bronchi ,and lungs .
Nose fulfills three important functions which are :
1. warming of inhaled air .
b. filtration of air .
c. humidification of air .
Pharynx is a muscular tube , which forms a passageway for air and food .During swallowing the epiglottis closes the larynx and the bolus of food falls in the esophagus .
Larynx is a respiratory organ that connects pharynx with trachea . It is composed of many cartilages and muscles and
vocal cords . Its role in respiration is limited to being a conductive passageway for air .
Trachea is a tube composed of C shaped cartilage rings from anterior side, and of muscle (trachealis muscle ) from its posterior side.The rings prevent trachea from collapsing during the inspiration.
From the trachea the bronchi are branched into right and left bronchus ( primary bronchi) , which enter the lung .Then they repeatedly branch into secondary and tertiary bronchi and then into terminal and respiratory broncholes.There are about 23 branching levels from the right and left bronchi to the respiratory bronchioles , the first upper 17 branching are considered as a part of the conductive zones , while the lower 6 are considered to be respiratory zone.
The cartilaginous component decreases gradually from the trachea to the bronchioles . Bronchioles are totally composed of smooth muscles ( no cartilage) . With each branching the diameter of bronchi get smaller , the smallest diameter of respiratory passageways is that of respiratory bronchiole.
Lungs are evolved by pleura . Pleura is composed of two layers : visceral and parietal .
Between the two layers of pleura , there is a pleural cavity , filled with a fluid that decrease the friction between the visceral and parietal pleura.
Respiratory muscles : There are two group of respiratory muscles:
1. Inspiratory muscles : diaphragm and external intercostal muscle ( contract during quiet breathing ) , and accessory inspiratory muscles : scaleni , sternocleidomastoid , internal pectoral muscle , and others( contract during forceful inspiration).
2. Expiratory muscles : internal intercostal muscles , and abdominal muscles ( contract during forceful expiration)
Hemostasis - the stopping of the blood. Triggered by a ruptured vessel wall it occurs in several steps:
1) vascular spasm - most vessels will constrict strongly when their walls are damaged. This accounts for individuals not bleeding to death even when limbs are crushed. It also can help to enhance blood clotting in less severe injuries.
2) platelet plug - platelets become sticky when they contact collagen, a protein in the basement membrane of the endothelium exposed when the vessel wall is ruptured. As they stick together they can form a plug which will stem the flow of blood in minor vessels.
3) Formation of the Blood Clot:
A) release of platelet factors - as platelets stick together and to the vascular wall some are ruptured releasing chemicals such as thromboxane, PF3, ADP and other substances. These become prothrombin activators. Thromboxane also makes the platelets even stickier, and increases the vascular constriction. These reactions are self perpetuating and become a cascade which represents a positive feedback mechanism.
B) prothrombin activators : prothrombin (already in the blood) is split into smaller products including thrombin, an active protease.
C) thrombin splits soluble fibrinogen, already present in the plasma, into monomers which then polymerize to produce insoluble fibrin threads. The fibrin threads weave the platelets and other cells together to form the actual clot. This occurs within four to six minutes when the injury is severe and up to 15 minutes when it is not. After 15 minutes the clot begins to retract as the fibrin threads contract, pulling the broken edges of the injury together and smoothing the surface of the clot causing the chemical processes to cease. Eventually the clot will dissolve due to enzymes such as plasmin also present in the blood.
The extrinsic pathway: when tissues are damaged the damaged cells release substances called tissue thromboplastin which also acts as a prothrombin activator. This enhances and speeds coagulation when tissue damage is involved.
Anti-thrombin III - this factor helps to prevent clotting when no trigger is present by removing any thrombin present. Its function is magnified many times when heparin is present. Therefore heparin is used clinically as a short-term anticoagulant.
Vitamin K - stimulates the production of clotting factors including prothrombin and fibrinogen in the liver. This vitamin is normally produced by bacteria in the colon. Coumarin (or coumadin) competes with Vitamin K in the liver and is used clinically for long-term suppression of clotting.
Several factors important to clotting are known to be absent in forms of hemophilia. These factors are produced by specific genes which are mutated in the deficient forms. The factors are VIII, IX, and XI.
Calcium is necessary for blood clotting and its removal from the blood by complexing with citrate will prevent the blood from clotting during storage
Urine is a waste byproduct formed from excess water and metabolic waste molecules during the process of renal system filtration. The primary function of the renal system is to regulate blood volume and plasma osmolarity, and waste removal via urine is essentially a convenient way that the body performs many functions using one process. Urine formation occurs during three processes:
Filtration
Reabsorption
Secretion
Filtration
During filtration, blood enters the afferent arteriole and flows into the glomerulus where filterable blood components, such as water and nitrogenous waste, will move towards the inside of the glomerulus, and nonfilterable components, such as cells and serum albumins, will exit via the efferent arteriole. These filterable components accumulate in the glomerulus to form the glomerular filtrate.
Normally, about 20% of the total blood pumped by the heart each minute will enter the kidneys to undergo filtration; this is called the filtration fraction. The remaining 80% of the blood flows through the rest of the body to facilitate tissue perfusion and gas exchange.
Reabsorption
The next step is reabsorption, during which molecules and ions will be reabsorbed into the circulatory system. The fluid passes through the components of the nephron (the proximal/distal convoluted tubules, loop of Henle, the collecting duct) as water and ions are removed as the fluid osmolarity (ion concentration) changes. In the collecting duct, secretion will occur before the fluid leaves the ureter in the form of urine.
Secretion
During secretion some substances±such as hydrogen ions, creatinine, and drugs—will be removed from the blood through the peritubular capillary network into the collecting duct. The end product of all these processes is urine, which is essentially a collection of substances that has not been reabsorbed during glomerular filtration or tubular reabsorbtion.