NEET MDS Lessons
Physiology
Bronchitis = Irreversible Bronchioconstriction
. Causes - Infection, Air polution, cigarette smoke
a. Primary Defect = Enlargement & Over Activity of Mucous Glands, Secretions very viscous
b. Hypertrophy & hyperplasia, Narrows & Blocks bronchi, Lumen of airway, significantly narrow
c. Impaired Clearance by mucocillary elevator
d. Microorganism retension in lower airways,Prone to Infectious Bronchitis, Pneumonia
e. Permanent Inflamatory Changes IN epithelium, Narrows walls, Symptoms, Excessive sputum, coughing
f. CAN CAUSE EMPHYSEMA
- it's the individual pressure exerted independently by a particular gas within a mixture of gasses. The air we breath is a mixture of gasses: primarily nitrogen, oxygen, & carbon dioxide. So, the air you blow into a balloon creates pressure that causes the balloon to expand (& this pressure is generated as all the molecules of nitrogen, oxygen, & carbon dioxide move about & collide with the walls of the balloon). However, the total pressure generated by the air is due in part to nitrogen, in part to oxygen, & in part to carbon dioxide. That part of the total pressure generated by oxygen is the 'partial pressure' of oxygen, while that generated by carbon dioxide is the 'partial pressure' of carbon dioxide. A gas's partial pressure, therefore, is a measure of how much of that gas is present (e.g., in the blood or alveoli).
- the partial pressure exerted by each gas in a mixture equals the total pressure times the fractional composition of the gas in the mixture. So, given that total atmospheric pressure (at sea level) is about 760 mm Hg and, further, that air is about 21% oxygen, then the partial pressure of oxygen in the air is 0.21 times 760 mm Hg or 160 mm Hg.
Phases of cardiac cycle :
1. Early diastole ( also called the atrial diastole , or complete heart diastole) : During this phase :
- Atria are relaxed
- Ventricles are relaxed
- Semilunar valves are closed
- Atrioventricular valves are open
During this phase the blood moves passively from the venous system into the ventricles ( about 80 % of blood fills the ventricles during this phase.
2. Atrial systole : During this phase :
- Atria are contracting
- Ventricles are relaxed
- AV valves are open
- Semilunar valves are closed
- Atrial pressure increases.the a wave of atrial pressure appears here.
- P wave of ECG starts here
- intraventricular pressure increases due to the rush of blood then decrease due to continuous relaxation of ventricles.
The remaining 20% of blood is moved to fill the ventricles during this phase , due to atrial contraction.
3. Isovolumetric contraction : During this phase :
- Atria are relaxed
- Ventricles are contracting
- AV valves are closed
- Semilunar valves are closed
- First heart sound
- QRS complex.
The ventricular fibers start to contract during this phase , and the intraventricular pressure increases. This result in closing the AV valves , but the pressure is not yet enough to open the semilunar valves , so the blood volume remain unchanged , and the muscle fibers length also remain unchanged , so we call this phase as isovolumetric contraction ( iso : the same , volu= volume , metric= length).
4. Ejection phase : Blood is ejected from the ventricles into the aorta and pulmonary artery .
During this phase :
- Ventricles are contracting
- Atria are relaxed
- AV valves are closed
- Semilunar valves are open
- First heart sound
- Intraventricular pressure is increased , due to continuous contraction
- increased aortic pressure .
- T wave starts.
5. Isovolumetric relaxation: This phase due to backflow of blood in aorta and pulmonary system after the ventricular contraction is up and the ventricles relax . This backflow closes the semilunar valves .
During this phase :
- Ventricles are relaxed
- Atrial are relaxed
- Semilunar valves are closed .
- AV valves are closed.
- Ventricular pressure fails rapidly
- Atrial pressure increases due to to continuous venous return. the v wave appears here.
- Aortic pressure : initial sharp decrease due to sudden closure of the semilunar valve ( diacrotic notch) , followed by secondary rise in pressure , due to elastic recoil of the aorta ( diacrotic wave) .
- T wave ends in this phase
As the contents of the stomach become thoroughly liquefied, they pass into the duodenum, the first segment of the small intestine. The duodenum is the first 10" of the small intestine
Two ducts enter the duodenum:
- one draining the gall bladder and hence the liver
- the other draining the exocrine portion of the pancreas.
From the intestinal mucosal cells, and from the liver and gallbladder. Secretions from the pancreas and bile from the gallbladder enter the duodenum through the hepatopancreatic ampulla and the sphincter of Oddi. These lie where the pancreatic duct and common bile duct join before entering the duodenum. The presence of fatty chyme in the duodenum causes release of the hormone CCK into the bloodstream. CCK is one of the enterogastrones and its main function, besides inhibiting the stomach, is to stimulate the release of enzymes by the pancreas, and the contraction of the gallbladder to release bile. It also stimulates the liver to produce bile. Consumption of excess fat results in excessive bile production by the liver, and this can lead to the formation of gallstones from precipitation of the bile salts.
The acid in the chyme stimulates the release of secretin which causes the pancreas to release bicarbonate which neutralizes the acidity
Lipids:
- about 40% of the dry mass of a typical cell
- composed largely of carbon & hydrogen
- generally insoluble in water
- involved mainly with long-term energy storage; other functions are as structural components (as in the case of phospholipids that are the major building block in cell membranes) and as "messengers" (hormones) that play roles in communications within and between cells
- Subclasses include:
- Triglycerides - consist of one glycerol molecule + 3 fatty acids (e.g., stearic acid in the diagram below). Fatty acids typically consist of chains of 16 or 18 carbons (plus lots of hydrogens).
- phospholipids - Composed of 2 fatty acids, glycerol, phosphate and polar groups , phosphate group (-PO4) substitutes for one fatty acid & these lipids are an important component of cell membranes
steroids - have 4 rings- cholesterol, some hormones, found in membranes include testosterone, estrogen, & cholesterol
The Nerve Impulse
When a nerve is stimulated the resting potential changes. Examples of such stimuli are pressure, electricity, chemicals, etc. Different neurons are sensitive to different stimuli(although most can register pain). The stimulus causes sodium ion channels to open. The rapid change in polarity that moves along the nerve fiber is called the "action potential." In order for an action potential to occur, it must reach threshold. If threshold does not occur, then no action potential can occur. This moving change in polarity has several stages:
Depolarization
The upswing is caused when positively charged sodium ions (Na+) suddenly rush through open sodium gates into a nerve cell. The membrane potential of the stimulated cell undergoes a localized change from -55 millivolts to 0 in a limited area. As additional sodium rushes in, the membrane potential actually reverses its polarity so that the outside of the membrane is negative relative to the inside. During this change of polarity the membrane actually develops a positive value for a moment(+30 millivolts). The change in voltage stimulates the opening of additional sodium channels (called a voltage-gated ion channel). This is an example of a positive feedback loop.
Repolarization
The downswing is caused by the closing of sodium ion channels and the opening of potassium ion channels. Release of positively charged potassium ions (K+) from the nerve cell when potassium gates open. Again, these are opened in response to the positive voltage--they are voltage gated. This expulsion acts to restore the localized negative membrane potential of the cell (about -65 or -70 mV is typical for nerves).
Hyperpolarization
When the potassium ions are below resting potential (-90 mV). Since the cell is hyper polarized, it goes to a refractory phrase.
Refractory phase
The refractory period is a short period of time after the depolarization stage. Shortly after the sodium gates open, they close and go into an inactive conformation. The sodium gates cannot be opened again until the membrane is repolarized to its normal resting potential. The sodium-potassium pump returns sodium ions to the outside and potassium ions to the inside. During the refractory phase this particular area of the nerve cell membrane cannot be depolarized. This refractory area explains why action potentials can only move forward from the point of stimulation.
Factors that affect sensitivity and speed
Sensitivity
Increased permeability of the sodium channel occurs when there is a deficit of calcium ions. When there is a deficit of calcium ions (Ca+2) in the interstitial fluid, the sodium channels are activated (opened) by very little increase of the membrane potential above the normal resting level. The nerve fiber can therefore fire off action potentials spontaneously, resulting in tetany. This could be caused by the lack of hormone from parathyroid glands. It could also be caused by hyperventilation, which leads to a higher pH, which causes calcium to bind and become unavailable.
Speed of Conduction
This area of depolarization/repolarization/recovery moves along a nerve fiber like a very fast wave. In myelinated fibers, conduction is hundreds of times faster because the action potential only occurs at the nodes of Ranvier (pictured below in 'types of neurons') by jumping from node to node. This is called "saltatory" conduction. Damage to the myelin sheath by the disease can cause severe impairment of nerve cell function. Some poisons and drugs interfere with nerve impulses by blocking sodium channels in nerves. See discussion on drug at the end of this outline.
Cystic Fibrosis
→ Thick mucus coagulates in ducts, produces obstruction, Too thick for cilia to move
→ Major Systems Affected: Respiratory System, G. I. Tract,Reproductive Tract
→ Inherited, autosomal recessive gene, most common fatal genetic disorder
→ Major characteristic, Altered electrolyte composition (Saliva & sweat Na+, K+, Cl-)
→ Family history of Cystic Fibrosis
→ Respiratory Infections & G.I.Tract malabsorption
→ Predisposes lung to Secondary infection (Staphylococcus, Pseudomonas)
→ Damages Respiratory Bronchioles and Alveolar ducts, Produces Fibrosis of Lungs, Large cystic dilations)