Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

HEART DISORDERS

  1. Pump failure => Alters pressure (flow) =>alters oxygen carrying capacity.
    1. Renin release (Juxtaglomerular cells) Kidney
    2. Converts Angiotensinogen => Angiotensin I
    3. In lungs Angiotensin I Converted => Angiotensin II
    4. Angiotensin II = powerful vasoconstrictor (raises pressure, increases afterload)
      1. stimulates thirst
      2. stimulates adrenal cortex to release Aldosterone
        (Sodium retention, potassium loss)
      3. stimulates kidney directly to reabsorb Sodium
      4. releases ADH from Posterior Pituitary
  2. Myocardial Infarction

     

    1. Myocardial Cells die from lack of Oxygen
    2. Adjacent vessels (collateral) dilate to compensate
    3. Intracellular Enzymes leak from dying cells (Necrosis)
      1. Creatine Kinase CK (Creatine Phosphokinase) 3 forms
        1. One isoenzyme = exclusively Heart (MB)
        2. CK-MB blood levels found 2-5 hrs, peak in 24 hrs
        3. Lactic Dehydrogenase found 6-10 hours after. points less clearly to infarction
      2. Serum glutamic oxaloacetic transaminase (SGOT)
        1. Found 6 hrs after infarction, peaks 24-48 hrs at 2 to 15 times normal,
        2. SGOT returns to normal after 3-4 days
    4. Myocardium weakens = Decreased CO & SV (severe - death)
    5. Infarct heal by fibrous repair
    6. Hypertrophy of undamaged myocardial cells
      1. Increased contractility to restore normal CO
      2. Improved by exercise program
    7. Prognosis
      1. 10% uncomplicated recovery
      2. 20% Suddenly fatal
      3. Rest MI not fatal immediately, 15% will die from related causes
  3. Congenital heart disease (Affect oxygenation of blood)
    1. Septal defects
    2. Ductus arteriosus
    3. Valvular heart disease
      1. Stenosis = cusps, fibrotic & thickened, Sometimes fused, can not open
      2. Regurgitation = cusps, retracted, Do not close, blood moves backwards

The hepatic portal system

The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:

  • Glucose is removed and converted into glycogen.
  • Other monosaccharides are removed and converted into glucose.
  • Excess amino acids are removed and deaminated.
    • The amino group is converted into urea.
    • The residue can then enter the pathways of cellular respiration and be oxidized for energy.
  • Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.

The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.

Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by

  • converting its glycogen stores to glucose (glycogenolysis)
  • converting certain amino acids into glucose (gluconeogenesis).

The Types of muscle cells. There are three types, red, white, and intermediate.

White Fibers

Fast twitch

Large diameter, used for speed and strength.

Depends on the phosphagen system and on glycolysis-lactic acid.

Stores glycogen for conversion to glucose.

Fewer blood vessels.

Little or no myoglobin.

Red Fibers

Slow twitch

Small diameter, used for endurance.

Depends on aerobic metabolism.

Utilize fats as well as glucose.

Little glycogen storage.

Many blood vessels and much myoglobin give this muscle its reddish appearance.

 

Intermediate Fibers: sometimes called "fast twitch red", these fibers have faster action but rely more on aerobic metabolism and have more endurance. Most muscles are mixtures of the different types. Muscle fiber types and their relative abundance cannot be varied by training, although there is some evidence that prior to maturation of the muscular system the emphasis on certain activities can influence their development

Nucleic Acids:

  • Two major types: DNA
  • RNA (including mRNA, tRNA, & rRNA) 
    • Both types have code which specifies the sequence of amino acids in proteins
    • DNA = archival copy of genetic code, kept in nucleus, protected
    • RNA = working copy of code, used to translate a specific gene into a protein, goes into cytoplasm & to ribosomes, rapidly broken down
  • Nucleic acids are made of 5 nucleotide bases, sugars and phosphate groups
  • The bases make up the genetic code ; the phosphate and sugar make up the backbone
  • RNA is a molecule with a single strand
  • DNA is a double strand (a double helix) held together by hydrogen bonds between the bases
    • A = T; C= G because:
      • A must always hydrogen bond to T

C must always hydrogen bond to G

Conductivity :

 Means ability of cardiac muscle to propagate electrical impulses through the entire heart ( from one part of the heart to another)  by the excitatory -conductive system of the heart.
 
Excitatory conductive system of the heart involves:


1. Sinoatrial node ( SA node) : Here the initial impulses start and then conducted to the atria through  the anterior inter-atrial pathway ( to the left atrium) , to the atrial muscle mass through the gap junction, and to the Atrioventricular node ( AV node ) through anterior, middle , and posterior inter-nodal pathways.
The average conductive velocity in the atria is 1m/s.

2- AV node : The electrical impulses can not be conducted directly from the atria to the ventricles , because of the  fibrous skeleton , which is an electrical isolator , located between the atria and ventricles. So the only conductive way is the AV node . But there is a delay in the conduction occurs in the AV node .
This delay is due to:
- the smaller size of the nodal fiber.
- The less negative resting membrane potential
- fewer gap junctions.

There are three sites for delay:
- In the transitional fibers , that connect inter-nodal pathways with the AV node ( 0.03 ) .
- AV node itself ( 0.09 s) .
- In the penetrating portion of Bundle of Hiss ( 0.04 s)  .
This delay actually allows atria to empty blood in ventricles during the cardiac cycle before the beginning of ventricular contraction  , as it prevents the ventricles from the pathological high atrial rhythm.
The average velocity of conduction in the AV node is 0.02-0.05 m/s

3- Bundle of Hiss : A continuous with the AV node that passes to the ventricles through the inter-ventricular septum. It is subdivided into : Right and left bundle. The left bundle is also subdivided into two branches: anterior and posterior branches .


4- Purkinje`s fibers: large fibers with velocity of conduction 1.5-4 m/s.
the high velocity of these fibers is due to the abundant gap junctions , and to their nature as very large fibers as well.
The conduction from AV node is a one-way conduction . This prevents the re-entry of cardiac impulses from the ventricles to the atria.
Lastly: The conduction through the ventricular fibers has a velocity of 0.3-0.5 m/s.

Factors , affecting conductivity ( dromotropism)  :

I. Positive dromotropic factors :

1. Sympathetic stimulation : it accelerates conduction and decrease AV delay .
2. Mild warming
3. mild hyperkalemia
4. mild ischemia
5. alkalosis

II. Negative dromotropic factors :

1. Parasympathetic stimulation
2. severe warming
3. cooling
4. Severe hyperkalemia
5. hypokalemia
6. Severe ischemia
7. acidosis
8. digitalis drugs.

Asthma = Reversible Bronchioconstruction 4%-5% of population
    Extrinsic / Atopic = Allergic, inherited (familia), chromosome 11
    IgE, Chemical Mediators of inflammation
    
a.    Intrinsic = Negative for Allergy, Normal IgE, Negative Allergic Tests

    Nucleotide Imbalance cAMP/cGMP: cAMP = Inhibits mediator release, cGMP = Facilitates mediator release
b.    Intolerance to Asprin (Triad Asthma)
c.    Nasal Polyps & Asthma

d.    Treatment cause, Symptoms in Acute Asthma
    1.    Bronchial dilators
    2.    steroids edema from Inflamation
    3.    Bronchiohygene to prevent Secondary Infection, (Remove Excess Mucus)
    4.    Education

Graded Contractions and Muscle Metabolism

The muscle twitch is a single response to a single stimulus. Muscle twitches vary in length according to the type of muscle cells involved. .

 

Fast twitch muscles such as those which move the eyeball have twitches which reach maximum contraction in 3 to 5 ms (milliseconds).  [superior eye] and [lateral eye] These muscles were mentioned earlier as also having small numbers of cells in their motor units for precise control.

The cells in slow twitch muscles like the postural muscles (e.g. back muscles, soleus) have twitches which reach maximum tension in 40 ms or so.

 The muscles which exhibit most of our body movements have intermediate twitch lengths of 10 to 20 ms.

The latent period, the period of a few ms encompassing the chemical and physical events preceding actual contraction.

This is not the same as the absolute refractory period, the even briefer period when the sarcolemma is depolarized and cannot be stimulated. The relative refractory period occurs after this when the sarcolemma is briefly hyperpolarized and requires a greater than normal stimulus

Following the latent period is the contraction phase in which the shortening of the sarcomeres and cells occurs. Then comes the relaxation phase, a longer period because it is passive, the result of recoil due to the series elastic elements of the muscle.

We do not use the muscle twitch as part of our normal muscle responses. Instead we use graded contractions, contractions of whole muscles which can vary in terms of their strength and degree of contraction. In fact, even relaxed muscles are constantly being stimulated to produce muscle tone, the minimal graded contraction possible.

Muscles exhibit graded contractions in two ways:

1) Quantal Summation or Recruitment - this refers to increasing the number of cells contracting. This is done experimentally by increasing the voltage used to stimulate a muscle, thus reaching the thresholds of more and more cells. In the human body quantal summation is accomplished by the nervous system, stimulating increasing numbers of cells or motor units to increase the force of contraction.

2) Wave Summation ( frequency summation) and Tetanization- this results from stimulating a muscle cell before it has relaxed from a previous stimulus. This is possible because the contraction and relaxation phases are much longer than the refractory period. This causes the contractions to build on one another producing a wave pattern or, if the stimuli are high frequency, a sustained contraction called tetany or tetanus. (The term tetanus is also used for an illness caused by a bacterial toxin which causes contracture of the skeletal muscles.) This form of tetanus is perfectly normal and in fact is the way you maintain a sustained contraction.

Treppe is not a way muscles exhibit graded contractions. It is a warmup phenomenon in which when muscle cells are initially stimulated when cold, they will exhibit gradually increasing responses until they have warmed up. The phenomenon is due to the increasing efficiency of the ion gates as they are repeatedly stimulated. Treppe can be differentiated from quantal summation because the strength of stimulus remains the same in treppe, but increases in quantal summation

Length-Tension Relationship: Another way in which the tension of a muscle can vary is due to the length-tension relationship. This relationship expresses the characteristic that within about 10% the resting length of the muscle, the tension the muscle exerts is maximum. At lengths above or below this optimum length the tension decreases.

Explore by Exams