Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Exchange of gases takes place in Lungs

  • A person with an average ventilation rate of 7.5 L/min will breathe in and out 10,800 liters of gas each day
  • From this gas the person will take in about 420 liters of oxygen (19 moles/day) and will give out about 340 liters of carbon dioxide (15 moles/day)
  • The ratio of CO2 expired/O2 inspired is called the respiratory quotient (RQ)
    • RQ = CO2 out/O2 in = 340/420 = 0.81
    • In cellular respiration of glucose CO2 out = O2 in; RQ = 1
    • The overall RQ is less than 1 because our diet is a mixture of carbohydrates and fat; the RQ for metabolizing fat is only 0.7
  • All of the exchange of gas takes place in the lungs
  • The lungs also give off large amounts of heat and water vapor

The Sliding Filament mechanism of muscle contraction.

When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens

 

The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.

It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together

 

Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex. 

The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.

Hypoxia

  • Hypoxia is tissue oxygen deficiency
  • Brain is the most sensitive tissue to hypoxia: complete lack of oxygen can cause unconsciousness in 15 sec and irreversible damage within 2 min.
  • Oxygen delivery and use can be interrupted at several sites

 

Type of
Hypoxia

O2 Uptake
in Lungs

Hemoglobin

Circulation

 Tissue O2 Utilization

 Hypoxic

 Low

Normal

Normal

Normal

 Anemic

 Normal

 Low

Normal

Normal

 Ischemic

 Normal

Normal

 Low

Normal

 Histotoxic

 Normal

Normal

Normal

 Low

  • Causes:
    • Hypoxic: high altitude, pulmonary edema, hypoventilation, emphysema, collapsed lung
    • Anemic: iron deficiency, hemoglobin mutations, carbon monoxide poisoning
    • Ischemic: shock, heart failure, embolism
    • Histotoxic: cyanide poisoning (inhibits mitochondria)

 

  • Carbon monoxide (CO) poisoning:
    • CO binds to the same heme Fe atoms that O2 binds to
    • CO displaces oxygen from hemoglobin because it has a 200X greater affinity for hemoglobin.
    • Treatment for CO poisoning: move victim to fresh air. Breathing pure O2 can give faster removal of CO

 

  • Cyanide poisoning:
    • Cyanide inhibits the cytochrome oxidase enzyme of mitochondria
    • Two step treatment for cyanide poisoning:
      • 1) Give nitrites
        • Nitrites convert some hemoglobin to methemoglobin. Methemoglobin pulls cyanide away from mitochondria.
      • 2) Give thiosulfate.
        • Thiosulfate converts the cyanide to less poisonous thiocyanate.

SPECIAL VISCERAL AFFERENT (SVA) PATHWAYS

Taste

Special visceral afferent (SVA) fibers of cranial nerves VII, IX, and X conduct signals into the solitary tract of the brainstem, ultimately terminating in the nucleus of the solitary tract on the ipsilateral side.

Second-order neurons cross over and ascend through the brainstem in the medial lemniscus to the VPM of the thalamus.

Thalamic projections to area 43 (the primary taste area) of the postcentral gyrus complete the relay.

SVA VII fibers conduct from the chemoreceptors of taste buds on the anterior twothirds of the tongue, while SVA IX fibers conduct taste information from buds on the posterior one-third of the tongue.

SVA X fibers conduct taste signals from those taste cells located throughout the fauces.

Smell

The smell-sensitive cells (olfactory cells) of the olfactory epithelium project their central processes through the cribiform plate of the ethmoid bone, where they synapse with mitral cells. The central processes of the mitral cells pass from the olfactory bulb through the olfactory tract, which divides into a medial and lateral portion The lateral olfactory tract terminates in the prepyriform cortex and parts of the amygdala of the temporal lobe.

These areas represent the primary olfactory cortex. Fibers then project from here to area 28, the secondary olfactory area, for sensory evaluation. The medial olfactory tract projects to the anterior perforated sub­stance, the septum pellucidum, the subcallosal area, and even the contralateral olfactory tract.

Both the medial and lateral olfactory tracts contribute to the visceral reflex pathways, causing the viscerosomatic and viscerovisceral responses.

Cell, or Plasma, membrane

  • Structure - 2 primary building blocks include

protein (about 60% of the membrane) and lipid, or

fat (about 40% of the membrane).

The primary lipid is called phospholipids, and molecules of phospholipid form a 'phospholipid bilayer' (two layers of phospholipid molecules). This bilayer forms because the two 'ends' of phospholipid molecules have very different characteristics: one end is polar (or hydrophilic) and one (the hydrocarbon tails below) is non-polar (or hydrophobic):

  • Functions include:
    • supporting and retaining the cytoplasm
    • being a selective barrier .
    • transport
    • communication (via receptors)

Conductivity :

 Means ability of cardiac muscle to propagate electrical impulses through the entire heart ( from one part of the heart to another)  by the excitatory -conductive system of the heart.
 
Excitatory conductive system of the heart involves:


1. Sinoatrial node ( SA node) : Here the initial impulses start and then conducted to the atria through  the anterior inter-atrial pathway ( to the left atrium) , to the atrial muscle mass through the gap junction, and to the Atrioventricular node ( AV node ) through anterior, middle , and posterior inter-nodal pathways.
The average conductive velocity in the atria is 1m/s.

2- AV node : The electrical impulses can not be conducted directly from the atria to the ventricles , because of the  fibrous skeleton , which is an electrical isolator , located between the atria and ventricles. So the only conductive way is the AV node . But there is a delay in the conduction occurs in the AV node .
This delay is due to:
- the smaller size of the nodal fiber.
- The less negative resting membrane potential
- fewer gap junctions.

There are three sites for delay:
- In the transitional fibers , that connect inter-nodal pathways with the AV node ( 0.03 ) .
- AV node itself ( 0.09 s) .
- In the penetrating portion of Bundle of Hiss ( 0.04 s)  .
This delay actually allows atria to empty blood in ventricles during the cardiac cycle before the beginning of ventricular contraction  , as it prevents the ventricles from the pathological high atrial rhythm.
The average velocity of conduction in the AV node is 0.02-0.05 m/s

3- Bundle of Hiss : A continuous with the AV node that passes to the ventricles through the inter-ventricular septum. It is subdivided into : Right and left bundle. The left bundle is also subdivided into two branches: anterior and posterior branches .


4- Purkinje`s fibers: large fibers with velocity of conduction 1.5-4 m/s.
the high velocity of these fibers is due to the abundant gap junctions , and to their nature as very large fibers as well.
The conduction from AV node is a one-way conduction . This prevents the re-entry of cardiac impulses from the ventricles to the atria.
Lastly: The conduction through the ventricular fibers has a velocity of 0.3-0.5 m/s.

Factors , affecting conductivity ( dromotropism)  :

I. Positive dromotropic factors :

1. Sympathetic stimulation : it accelerates conduction and decrease AV delay .
2. Mild warming
3. mild hyperkalemia
4. mild ischemia
5. alkalosis

II. Negative dromotropic factors :

1. Parasympathetic stimulation
2. severe warming
3. cooling
4. Severe hyperkalemia
5. hypokalemia
6. Severe ischemia
7. acidosis
8. digitalis drugs.

Tubular secretion:

Involves transfer of substances from peritubular capillaries into the tubular lumen. It  involves transepithelial transport in a direction opposite to that of tubular absorption.

Renal tubules can selectively add some substances that have not been filtered to the substances that already have been filtered via tubular secretion.

Tubular secretion mostly function to eliminate foreign  organic ions, hydrogen ions ( as a contribution to acid base balance ), potassium ions ( as a contribution to maintaining optimal plasma K+ level to assure normal proceeding of neural and muscular functions), and urea.
Here we will focus on K+ secretion and will later discuss H+ secretion in acid base balance, while urea secretion will be discussed in water balance.

K+ is filtered in glomerular capillaries and then reabsorbed in proximal convoluted tubules as well as in thick ascending limb of loop of Henley ( Na-2Cl-K symporter)

K+ secretion takes place in collecting tubules (distal nephron) . There are two types of cells in distal nephron:

- Principal cells that reabsorb sodium and secrete K+ .
- Intercalated cells that reabsorb K+ in exchange with H+.


Mechanism of secretion of K+ in principal cells : Two steps


- K+ enters tubular cells by Na/K ATPase on the basolateral membrane.
- K+ leaves the tubular cells via K+ channels in apical membrane.


Aldosterone is a necessary regulatory factor.

If there is increased level of K+ in plasma,excessive K+ is secreted , some of which is reabsorbed back to the plasma in exchange with H+ via the intercalated cells.        

Explore by Exams