Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

GENERAL SOMATIC AFFERENT (GSA) PATHWAYS FROM THE BODY

Pain and Temperature

Pain and temperature information from general somatic receptors is conducted over small-diameter (type A delta and type C) GSA fibers of the spinal nerves into the posterior horn of the spinal cord gray matter .

Fast and Slow Pain

Fast pain, often called sharp or pricking pain, is usually conducted to the CNS over type A delta fibers.

Slow pain, often called burning pain, is conducted to the CNS over smaller-diameter type C fibers.

Touch and Pressure

Touch can be subjectively described as discriminating or crude.

Discriminating (epicritic) touch implies an awareness of an object's shape, texture, three-dimensional qualities, and other fine points. Ability to recognize familiar objects simply by tactile manipulation.

The conscious awareness of body position and movement is called the kinesthetic sens

Crude (protopathic) touch,  lacks the fine discrimination described above and doesn't generally give enough information to the brain to enable it to recognize a familiar object by touch alone.

Subconscious Proprioception

Most of the subconscious proprioceptive input is shunted to the cerebellum.

Posterior Funiculus Injury

Certain clinical signs are associated with injury to the dorsal columns.

 As might be expected, these are generally caused by impairment to the kinesthetic sense and discriminating touch and pressure pathways.

 They include

 (1) the inability to recognize limb position,

 (2) as­tereognosis,

 (3) loss of two-point discrimination,

 (4) loss of vibratory sense, and

 (5) a positive Romberg sign.

Astereognosis is the inability to recognize familiar objects by touch alone. When asked to stand erect with feet together and eyes closed, a person with dorsal column damage may sway and fall. This is a posi­tive Romberg sign.

Hemostasis - the  stopping of the blood. Triggered by a ruptured vessel wall it occurs in several steps:

1) vascular spasm - most vessels will constrict strongly when their walls are damaged. This accounts for individuals not bleeding to death even when limbs are crushed. It also can help to enhance blood clotting in less severe injuries.

2) platelet plug - platelets become sticky when they contact collagen, a protein in the basement membrane of the endothelium exposed when the vessel wall is ruptured. As they stick together they can form a plug which will stem the flow of blood in minor vessels.

3) Formation of the Blood Clot:

A) release of platelet factors - as platelets stick together and to the vascular wall some are ruptured releasing chemicals such as thromboxane, PF3, ADP and other substances. These become prothrombin activators. Thromboxane also makes the platelets even stickier, and increases the vascular constriction. These reactions are self perpetuating and become a cascade which represents a positive feedback mechanism.

B) prothrombin activators : prothrombin (already in the blood) is split into smaller products including thrombin, an active protease.

C) thrombin splits soluble fibrinogen, already present in the plasma, into monomers which then polymerize to produce insoluble fibrin threads. The fibrin threads weave the platelets and other cells together to form the actual clot. This occurs within four to six minutes when the injury is severe and up to 15 minutes when it is not. After 15 minutes the clot begins to retract as the fibrin threads contract, pulling the broken edges of the injury together and smoothing the surface of the clot causing the chemical processes to cease. Eventually the clot will dissolve due to enzymes such as plasmin also present in the blood.

The extrinsic pathway: when tissues are damaged the damaged cells release substances called tissue thromboplastin which also acts as a prothrombin activator. This enhances and speeds coagulation when tissue damage is involved.

Anti-thrombin III - this factor helps to prevent clotting when no trigger is present by removing any thrombin present. Its function is magnified many times when heparin is present. Therefore heparin is used clinically as a short-term anticoagulant.

Vitamin K - stimulates the production of clotting factors including prothrombin and fibrinogen in the liver. This vitamin is normally produced by bacteria in the colon. Coumarin (or coumadin) competes with Vitamin K in the liver and is used clinically for long-term suppression of clotting.

Several factors important to clotting are known to be absent in forms of hemophilia. These factors are produced by specific genes which are mutated in the deficient forms. The factors are  VIII, IX, and XI.

Calcium is necessary for blood clotting and its removal from the blood by complexing with citrate will prevent the blood from clotting during storage

The endocrine system along with the nervous system functions in the regulation of body activities.  The nervous system acts through electrical impulses and neurotransmitters to cause muscle contraction and glandular secretion and interpretation of impulses.  The endocrine system acts through chemical messengers called hormones that influence growth, development, and metabolic activities

The nephron of the kidney is involved in the regulation of water and soluble substances in blood.

A Nephron

A nephron is the basic structural and functional unit of the kidneys that regulates water and soluble substances in the blood by filtering the blood, reabsorbing what is needed, and excreting the rest as urine.

 Its function is vital for homeostasis of blood volume, blood pressure, and plasma osmolarity.

It is regulated by the neuroendocrine system by hormones such as antidiuretic hormone, aldosterone, and parathyroid hormone.

The Glomerulus

The glomerulus is a capillary tuft that receives its blood supply from an afferent arteriole of the renal circulation. Here, fluid and solutes are filtered out of the blood and into the space made by Bowman's capsule.

 

A group of specialized cells known as juxtaglomerular apparatus (JGA) are located around the afferent arteriole where it enters the renal corpuscle. The JGA secretes an enzyme called renin, due to a variety of stimuli, and it is involved in the process of blood volume homeostasis.

The Bowman's capsule surrounds the glomerulus. It is composed of visceral (simple squamous epithelial cells; inner) and parietal (simple squamous epithelial cells; outer) layers.

Red blood cells and large proteins, such as serum albumins, cannot pass through the glomerulus under normal circumstances. However, in some injuries they may be able to pass through and can cause blood and protein content to enter the urine, which is a sign of problems in the kidney.

Proximal Convoluted Tubule

The proximal tubule is the first site of water reabsorption into the bloodstream, and the site where the majority of water and salt reabsorption takes place. Water reabsorption in the proximal convoluted tubule occurs due to both passive diffusion across the basolateral membrane, and active transport from Na+/K+/ATPase pumps that actively transports sodium across the basolateral membrane.

Water and glucose follow sodium through the basolateral membrane via an osmotic gradient, in a process called co-transport. Approximately 2/3rds of water in the nephron and 100% of the glucose in the nephron are reabsorbed by cotransport in the proximal convoluted tubule.

Fluid leaving this tubule generally is unchanged due to the equivalent water and ion reabsorption, with an osmolarity (ion concentration) of 300 mOSm/L, which is the same osmolarity as normal plasma.

The Loop of Henle

The loop of Henle is a U-shaped tube that consists of a descending limb and ascending limb. It transfers fluid from the proximal to the distal tubule. The descending limb is highly permeable to water but completely impermeable to ions, causing a large amount of water to be reabsorbed, which increases fluid osmolarity to about 1200 mOSm/L. In contrast, the ascending limb of Henle's loop is impermeable to water but highly permeable to ions, which causes a large drop in the osmolarity of fluid passing through the loop, from 1200 mOSM/L to 100 mOSm/L.

Distal Convoluted Tubule and Collecting Duct

The distal convoluted tubule and collecting duct is the final site of reabsorption in the nephron. Unlike the other components of the nephron, its permeability to water is variable depending on a hormone stimulus to enable the complex regulation of blood osmolarity, volume, pressure, and pH.

Normally, it is impermeable to water and permeable to ions, driving the osmolarity of fluid even lower. However, anti-diuretic hormone (secreted from the pituitary gland as a part of homeostasis) will act on the distal convoluted tubule to increase the permeability of the tubule to water to increase water reabsorption. This example results in increased blood volume and increased blood pressure. Many other hormones will induce other important changes in the distal convoluted tubule that fulfill the other homeostatic functions of the kidney.

The collecting duct is similar in function to the distal convoluted tubule and generally responds the same way to the same hormone stimuli. It is, however, different in terms of histology. The osmolarity of fluid through the distal tubule and collecting duct is highly variable depending on hormone stimulus. After passage through the collecting duct, the fluid is brought into the ureter, where it leaves the kidney as urine.

Exchange of gases takes place in Lungs

  • A person with an average ventilation rate of 7.5 L/min will breathe in and out 10,800 liters of gas each day
  • From this gas the person will take in about 420 liters of oxygen (19 moles/day) and will give out about 340 liters of carbon dioxide (15 moles/day)
  • The ratio of CO2 expired/O2 inspired is called the respiratory quotient (RQ)
    • RQ = CO2 out/O2 in = 340/420 = 0.81
    • In cellular respiration of glucose CO2 out = O2 in; RQ = 1
    • The overall RQ is less than 1 because our diet is a mixture of carbohydrates and fat; the RQ for metabolizing fat is only 0.7
  • All of the exchange of gas takes place in the lungs
  • The lungs also give off large amounts of heat and water vapor

An anti-diruetic is a substance that decreases urine volume, and ADH is the primary example of it within the body. ADH is a hormone secreted from the posterior pituitary gland in response to increased plasma osmolarity (i.e., increased ion concentration in the blood), which is generally due to an increased concentration of ions relative to the volume of plasma, or decreased plasma volume.

The increased plasma osmolarity is sensed by osmoreceptors in the hypothalamus, which will stimulate the posterior pituitary gland to release ADH. ADH will then act on the nephrons of the kidneys to cause a decrease in plasma osmolarity and an increase in urine osmolarity.

ADH increases the permeability to water of the distal convoluted tubule and collecting duct, which are normally impermeable to water. This effect causes increased water reabsorption and retention and decreases the volume of urine produced relative to its ion content.

After ADH acts on the nephron to decrease plasma osmolarity (and leads to increased blood volume) and increase urine osmolarity, the osmoreceptors in the hypothalamus will inactivate, and ADH secretion will end. Due to this response, ADH secretion is considered to be a form of negative feedback.

Vital Capacity: The vital capacity (VC) is the maximum volume which can be ventilated in a single breath. VC= IRV+TV+ERV. VC varies with gender, age, and body build. Measuring VC gives a device for diagnosis of respiratory disorder, and a benchmark for judging the effectiveness of treatment. (4600 ml)

Vital Capacity is reduced in restrictive disorders, but not in disorders which are purely obstructive.

The FEV1 is the % of the vital capacity which is expelled in the first second. It should be at least 75%. The FEV1 is reduced in obstructive disorders.

Both VC and the FEV1 are reduced in disorders which are both restrictive and obstructive

Oxygen is present at nearly 21% of ambient air. Multiplying .21 times 760 mmHg (standard pressure at sea level) yields a pO2 of about 160. Carbon dioxide is .04% of air and its partial pressure, pCO2, is .3.

With alveolar air having a pO2 of 104 and a pCO2 of 40. So oxygen diffuses into the alveoli from inspired air and carbon dioxide diffuses from the alveoli into air which will be expired. This causes the levels of oxygen and carbon dioxide to be intermediate in expired air when compared to inspired air and alveolar air. Some oxygen has been lost to the alveolus, lowering its level to 120, carbon dioxide has been gained from the alveolus raising its level to 27.

Likewise a concentration gradient causes oxygen to diffuse into the blood from the alveoli and carbon dioxide to leave the blood. This produces the levels seen in oxygenated blood in the body. When this blood reaches the systemic tissues the reverse process occurs restoring levels seen in deoxygenated blood.

Explore by Exams