Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Damage to Spinal Nerves and Spinal Cord

Damage

Possible cause of damage

Symptoms associated with innervated area

Peripheral nerve

Mechanical injury

Loss of muscle tone. Loss of reflexes. Flaccid paralysis. Denervation atrophy. Loss of sensation

Posterior root

Tabes dorsalis

Paresthesia. Intermittent sharp pains. Decreased sensitivity to pain. Loss of reflexes. Loss of sensation. Positive Romberg sign. High stepping and slapping of feet.

Anterior Horn

Poliomyelitis

Loss of muscle tone.  Loss of reflexes. Flaccid paralysis.  Denervation atrophy

Lamina X (gray matter)

Syringomyelia

Bilateral loss of pain and temperature sense only at afflicted cord level. Sensory dissociation. No sensory impairment below afflicted level

Anterior horn and lateral corticospinal tract

Amyotrophic lateral sclerosis

Muscle weakness.  Muscle atrophy. Fasciculations of hand and arm muscles. Spastic paralysis

Posterior and lateral funiculi

Subacute combined degeneration

Loss of position sense. Loss of vibratory sense. Positive Romberg sign. Muscle weakness. Spasticity. Hyperactive tendon reflexes. Positive Babinski sign.

Hemisection of the spinal cord

Mechanical injury

Brown-Sequard syndrome

Below cord level on injured side

Flaccid paralysis. Hyperactive tendon reflexes. Loss of position sense. Loss of vibratory sense. Tactile impairment

Below cord level on opposite side beginning one or two segments below injury

Loss of pain and temperature

The pancreas

The pancreas consists of clusters if endocrine cells (the islets of Langerhans) and exocrine cells whose secretions drain into the duodenum.

Pancreatic fluid contains:

  • sodium bicarbonate (NaHCO3). This neutralizes the acidity of the fluid arriving from the stomach raising its pH to about 8.
  • pancreatic amylase. This enzyme hydrolyzes starch into a mixture of maltose and glucose.
  • pancreatic lipase. The enzyme hydrolyzes ingested fats into a mixture of fatty acids and monoglycerides. Its action is enhanced by the detergent effect of bile.
  • 4 zymogens— proteins that are precursors to active proteases. These are immediately converted into the active proteolytic enzymes:
    • trypsin. Trypsin cleaves peptide bonds on the C-terminal side of arginines and lysines.
    • chymotrypsin. Chymotrypsin cuts on the C-terminal side of tyrosine, phenylalanine, and tryptophan residues (the same bonds as pepsin, whose action ceases when the NaHCO3 raises the pH of the intestinal contents).
    • elastase. Elastase cuts peptide bonds next to small, uncharged side chains such as those of alanine and serine.
    • carboxypeptidase. This enzyme removes, one by one, the amino acids at the C-terminal of peptides.
  • nucleases. These hydrolyze ingested nucleic acids (RNA and DNA) into their component nucleotides.

The secretion of pancreatic fluid is controlled by two hormones:

  • secretin, which mainly affects the release of sodium bicarbonate, and
  • cholecystokinin (CCK), which stimulates the release of the digestive enzymes.

The Sliding Filament mechanism of muscle contraction.

When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens

 

The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.

It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together

 

Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex. 

The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.

There are three types of muscle tissue, all of which share some common properties:

  • Excitability or responsiveness - muscle tissue can be stimulated by electrical, physical, or chemical means.
  • contractility - the response of muscle tissue to stimulation is contraction, or shortening.
  • elasticity or recoil - muscles have elastic elements (later we will call these their series elastic elements) which cause them to recoil to their original size.
  • stretchability or extensibility - muscles can also stretch and extend to a longer-than-resting length.

 

The three types of muscle: skeletal, cardiac, and visceral (smooth) muscle.

Skeletal muscle

It is found attached to the bones for movement.

cells are long multi-nucleated cylinders.

 The cells may be many inches long but vary in diameter, averaging between 100 and 150 microns.

 All the cells innervated by branches from the same neuron will contract at the same time and are referred to as a motor unit.

 Skeletal muscle is voluntary because the neurons which innervate it come from the somatic or voluntary branch of the nervous system.

That means you have willful control over your skeletal muscles.

 Skeletal muscles have distinct stripes or striations which identify them and are related to the organization of protein myofilaments inside the cell.

 

Cardiac muscle

This muscle found in the heart.

 It is composed of much shorter cells than skeletal muscle which branch to connect to one another.

 These connections are by means of gap junctions called intercalated disks which allow an electrochemical impulse to pass to all the connected cells.

 This causes the cells to form a functional network called a syncytium in which the cells work as a unit. Many cardiac muscle cells are myogenic which means that the impulse arises from the muscle, not from the nervous system. This causes the heart muscle and the heart itself to beat with its own natural rhythm.

But the autonomic nervous system controls the rate of the heart and allows it to respond to stress and other demands. As such the heart is said to be involuntary.

 

Visceral muscle is found in the body's internal organs and blood vessels.

 It is usually called smooth muscle because it has no striations and is therefore smooth in appearance. It is found as layers in the mucous membranes of the respiratory and digestive systems.

It is found as distinct bands in the walls of blood vessels and as sphincter muscles.

Single unit smooth muscle is also connected into a syncytium similar to cardiac muscle and is also partly myogenic. As such it causes continual rhythmic contractions in the stomach and intestine. There and in blood vessels smooth muscle also forms multiunit muscle which is stimulated by the autonomic nervous system. So smooth muscle is involuntary as well

Cystic Fibrosis
→ Thick mucus coagulates in ducts, produces obstruction, Too thick for cilia to move
 
→ Major Systems Affected: Respiratory System, G. I. Tract,Reproductive Tract

→ Inherited, autosomal recessive gene, most common fatal genetic disorder

→    Major characteristic, Altered electrolyte composition (Saliva & sweat Na+, K+, Cl-)

→    Family history of Cystic Fibrosis
→    Respiratory Infections & G.I.Tract malabsorption
→    Predisposes lung to Secondary infection (Staphylococcus, Pseudomonas)
→    Damages Respiratory Bronchioles and Alveolar ducts, Produces Fibrosis of Lungs, Large cystic dilations)

1. Automatic control (sensory) of respiration is in - brainstem (midbrain) 

2. Behavioral/voluntary control is in - the cortex

3. Alveolar ventilation -the amount of atmospheric air that actually reaches the alveolar per breath and that can participate in the exchange of gasses between alveoli and blood

4. Only way to increase gas exchange in alveolar capillaries - perfusion-limited gas exchange 

5. Pulmonary ventiliation not effected by - concentration of bicarbonate ions

6. Central chemoreceptors - medulla -  CO2, O2 and H+ concentrations

7. Peripheral chemoreceptors - carotid and aortic bodies- PO2, PCO2 and pH 

8. Major stimulus for respiratory centers - arterial PCO2 

9. Rhythmic breathing depends on 
1. continuous (tonic) inspiratory drive from DRG (dorsal respiratory group)
2. intermittent (phasic) expiratory input from cerebrum, thalamus, cranial nerves and ascending spinal cord sensory tracts

10. Primary site for gas exchange - type I epithelial cells for alveoli

 

Factors , affecting glomerular filtration rate :

 Factors that may influence the different pressure forces , or the filtration coefficient will affect the glomerular filtration rate . 
 
1. Dehydration : Causes decrease hydrostatic pressure , and thus decreases GFR
2- Liver diseases that may decrease the plasma proteins and decrease the oncotic pressure , and thus increases glomerular filtration rate .
3- Sympathetic stimulation : will decrease the diameter of afferent arteriole and thus decreases glomerular filtration rate.
4- Renal diseases : Nephrotic syndrome for example decreases the number of working nephrons and thus decreases the filtration coefficient and thus decreases the glomerular filtration rate.
Glomerulonephritis will causes thickening of the glomerular basement membrane and thus decreases the glomerular filtration rate by decreasing the filtration coefficient too.

Explore by Exams