Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

  • Sensory:
    • Somatic (skin & muscle) Senses:
      Postcentral gyrus (parietal lobe). This area senses touch, pressure, pain, hot, cold, & muscle position. The arrangement is upside-down (head below, feet above) and is switched from left to right (sensations from the right side of the body are received on the left side of the cortex). Some areas (face, hands) have many more sensory and motor nerves than others. A drawing of the body parts represented in the postcentral gyrus, scaled to show area, is called a homunculus .
    • Vision:
      Occipital lobe, mostly medial, in calcarine sulcus. Sensations from the left visual field go to the right cortex and vice versa. Like other sensations they are upside down. The visual cortex is very complicated because the eye must take into account shape, color and intensity.
    • Taste:
      Postcentral gyrus, close to lateral sulcus. The taste area is near the area for tongue somatic senses.
    • Smell:
       The olfactory cortex is not as well known as some of the other areas. Nerves for smell go to the olfactory bulb of the frontal cortex, then to other frontal cortex centers- some nerve fibers go directly to these centers, but others come from the thalamus like most other sensory nerves
    • Hearing:
      Temporal lobe, near junction of the central and lateral sulci. Mostly within the lateral sulcus. There is the usual crossover and different tones go to different parts of the cortex. For complex patterns of sounds like speech and music other areas of the cortex become involved.
  • Motor:
    • Primary Motor ( Muscle Control):
      Precentral gyrus (frontal lobe). Arranged like a piano keyboard: stimulation in this area will cause individual muscles to contract. Like the sensory cortex, the arrangement is in the form of an upside-down homunculus. The fibers are crossed- stimulation of the right cortex will cause contraction of a muscle on the left side of the body.
    • Premotor (Patterns of Muscle Contraction):
      Frontal lobe in front of precentral gyrus. This area helps set up learned patterns of muscle contraction (think of walking or running which involve many muscles contracting in just the right order).
    • Speech-Muscle Control:
      Broca's area, frontal lobe, usually in left hemisphere only. This area helps control the patterns of muscle contraction necessary for speech. Disorders in speaking are called aphasias.
  • Perception:
    • Speech- Comprehension:
      Wernicke's area, posterior end of temporal lobe, usually left hemisphere only. Thinking about words also involves areas in the frontal lobe.
    • Speech- Sound/Vision Association:
      Angular gyrus, , makes connections between sounds and shapes of words

  • The Autonomic Nervous System (ANS) Controls the Body's Internal Environment in a Coordinated Manner

  • The ANS helps control the heart rate, blood pressure, digestion, respiration, blood pH and other bodily functions through a series of complex reflex actions
  • These controls are done automatically, below the conscious level
  • To exert this control the activities of many different organs must be coordinated so they work to accomplish the same goal
  • In the ANS there are 2 nerves between the central nervous system (CNS) and the organ. The nerve cell bodies for the second nerve are organized into ganglia:
    • CNS -> Preganglionic nerve -> Ganglion -> Postganglionic nerve -> Organ
  • At each junction neurotransmitters are released and carry the signal to the next nerve or organ.
  • The ANS has 2 Divisions, Sympathetic and Parasympathetic

     

  • Comparison of the 2 systems:
  •  

    Anatomical
    Location

     Preganglionic
    Fibers

     Postganglionic
    Fibers

     Transmitter
    (Ganglia)

     Transmitter
    (Organs)

     Sympathetic

     Thoracic/
    Lumbar

     Short

    Long

    ACh

    NE

     Parasympathetic

     Cranial/
    Sacral

     Long

    Short

    ACh

    ACh

     

    The Sympathetic is the "Fight or Flight" Branch of the ANS

  • Emergency situations, where the body needs a sudden burst of energy, are handled by the sympathetic system
  • The sympathetic system increases cardiac output and pulmonary ventilation, routes blood to the muscles, raises blood glucose and slows down digestion, kidney filtration and other functions not needed during emergencies
  • Whole sympathetic system tends to "go off" together
  • In a controlled environment the sympathetic system is not required for life, but it is essential for any stressful situation
  • The Parasympathetic is the Rest and Digest Branch of the ANS

  • The parasympathetic system promotes normal maintenance of the body- acquiring building blocks and energy from food and getting rid of the wastes
  • It promotes secretions and mobility of different parts of the digestive tract.
  • Also involved in urination, defecation.
  • Does not "go off" together; activities initiated when appropriate
  • The vagus nerve (cranial number 10) is the chief parasympathetic nerve
  • Other cranial parasympathetic nerves are: III (oculomotor), VII (facial) and IX (glossopharyngeal)
  • The Hypothalamus Has Central Control of the ANS

  • The hypothalamus is involved in the coordination of ANS responses,
  • One section of the hypothalamus seems to control many of the "fight or flight" responses; another section favors "rest and digest" activities
  • The Adrenal Medulla is an Extension of the Sympathetic Nervous System

  • The adrenal medulla behaves like a combined autonomic ganglion and postsynaptic sympathetic nerve (see diagram above)
  • Releases both norepinephrine and epinephrine in emergency situations
    • Releases a mixture of epinephrine (E = 80%) and norepinephrine (NE = 20%)
    • Epinephrine = adrenaline
  • This action is under control of the hypothalamus
  • Sympathetic & Parasympathetic Systems

  • Usually (but not always) both sympathetic and parasympathetic nerves go to an organ and have opposite effects
  • You can predict about 90% of the sympathetic and parasympathetic responses using the 2 phrases: "Fight or Flight" and "Rest and Digest".
  • Special cases:
    • Occasionally the 2 systems work together: in sexual intercourse the parasympathetic promotes erection and the sympathetic produces ejaculation
    • Eye: the sympathetic response is dilation and relaxation of the ciliary muscle for far vision (parasympathetic does the opposite)
    • Urination: the parasympathetic system relaxes the sphincter muscle and promotes contraction of muscles of the bladder wall -> urination (sympathetic blocks urination)
    • Defecation: the parasympathetic system causes relaxation of the anal sphincter and stimulates colon and rectum to contract -> defecation (sympathetic blocks defecation)
  •  Organ

     Parasympathetic Response
    "Rest and Digest"

     Sympathetic Response
    "Fight or Flight"

     Heart
    (baroreceptor reflex)

    Decreased heart rate
    Cardiac output decreases

    Increased rate and strength of contraction
    Cardiac output increases

     Lung Bronchioles

     Constriction

    Dilation

     Liver Glycogen

    No effect

     Glycogen breakdown
    Blood glucose increases

     Fat Tissue

     No effect

    Breakdown of fat
    Blood fatty acids increase

     Basal Metabolism

     No effect

     Increases ~ 2X

     Stomach

     Increased secretion of HCl & digestive enzymes
    Increased motility

    Decreased secretion
    Decreased motility

     Intestine

     Increased secretion of HCl & digestive enzymes
    Increased motility

     Decreased secretion
    Decreased motility

     Urinary bladder

     Relaxes sphincter
    Detrusor muscle contracts
    Urination promoted

    Constricts sphincter
    Relaxes detrusor
    Urination inhibited

     Rectum

     Relaxes sphincter
    Contracts wall muscles
    Defecation promoted

     Constricts sphincter
    Relaxes wall muscles
    Defecation inhibited

     Eye

     Iris constricts
    Adjusts for near vision

    Iris dilates
    Adjusts for far vision

     Male Sex Organs

     Promotes erection

     Promotes ejaculation

     

Chemical Controls of Respiration

A.    Chemoreceptors (CO2, O2, H+)

1.    central chemoreceptors - located in the medulla
2.    peripheral chemoreceptors - large vessels of neck

B.    Carbon Dioxide Effects

1.    a powerful chemical regulator of breathing by increasing H+ (lowering pH)
    
a. hypercapnia            Carbon Dioxide increases -> 
                        Carbonic Acid increases ->
                        pH of CSF decreases (higher H+)- >
                        
DEPTH & RATE increase (hyperventilation)

b. hypocapnia - abnormally low Carbon Dioxide levels which can be produced by excessive hyperventilation; breathing into paper bag increases blood Carbon Dioxide levels

C.     Oxygen Effects

1.    aortic and carotid bodies - oxygen chemoreceptors

2.    slight Ox decrease - modulate Carb Diox receptors
3.    large Ox decrease - stimulate increase ventilation
4.    hypoxic drive - chronic elevation of Carb Diox (due to disease) causes Oxygen levels to have greater effect on regulation of breathing


D.    pH Effects (H+ ion)

1.    acidosis - acid buildup (H+) in blood, leads to increased RATE and DEPTH (lactic acid)


E.    Overview of Chemical Effects

 Chemical                             Breathing Effect

increased Carbon Dioxide (more H+)     increase
decreased Carbon Dioxide (less H+)     decrease

slight decrease in Oxygen             effect CO2 system
large decrease in Oxygen             increase ventilation

decreased pH (more H+)                 increase
increased pH (less H+)                 decrease

The Adrenal Glands

The adrenal glands are two small structures situated one at top each kidney. Both in anatomy and in function, they consist of two distinct regions:

  • an outer layer, the adrenal cortex, which surrounds
  • the adrenal medulla.

The Adrenal Cortex

cells of the adrenal cortex secrete a variety of steroid hormones.

  • glucocorticoids (e.g., cortisol)
  • mineralocorticoids (e.g., aldosterone)
  • androgens (e.g., testosterone)
  • Production of all three classes is triggered by the secretion of ACTH from the anterior lobe of the pituitary.

Glucocorticoids

They Effect by raising the level of blood sugar (glucose). One way they do this is by stimulating gluconeogenesis in the liver: the conversion of fat and protein into intermediate metabolites that are ultimately converted into glucose.

The most abundant glucocorticoid is cortisol (also called hydrocortisone).

Cortisol and the other glucocorticoids also have a potent anti-inflammatory effect on the body. They depress the immune response, especially cell-mediated immune responses. 

Mineralocorticoids

The most important of them is the steroid aldosterone. Aldosterone acts on the kidney promoting the reabsorption of sodium ions (Na+) into the blood. Water follows the salt and this helps maintain normal blood pressure.

Aldosterone also

  • acts on sweat glands to reduce the loss of sodium in perspiration;
  • acts on taste cells to increase the sensitivity of the taste buds to sources of sodium.

The secretion of aldosterone is stimulated by:

  • a drop in the level of sodium ions in the blood;
  • a rise in the level of potassium ions in the blood;
  • angiotensin II
  • ACTH (as is that of cortisol)

Androgens

The adrenal cortex secretes precursors to androgens such as testosterone.

Excessive production of adrenal androgens can cause premature puberty in young boys.

In females, the adrenal cortex is a major source of androgens. Their hypersecretion may produce a masculine pattern of body hair and cessation of menstruation.

Addison's Disease: Hyposecretion of the adrenal cortices

Addison's disease has many causes, such as

  • destruction of the adrenal glands by infection;
  • their destruction by an autoimmune attack;
  • an inherited mutation in the ACTH receptor on adrenal cells.

Cushing's Syndrome: Excessive levels of glucocorticoids

In Cushing's syndrome, the level of adrenal hormones, especially of the glucocorticoids, is too high.It can be caused by:

  • excessive production of ACTH by the anterior lobe of the pituitary;
  • excessive production of adrenal hormones themselves (e.g., because of a tumor), or (quite commonly)
  • as a result of glucocorticoid therapy for some other disorder such as
    • rheumatoid arthritis or
    • preventing the rejection of an organ transplant.

The Adrenal Medulla

The adrenal medulla consists of masses of neurons that are part of the sympathetic branch of the autonomic nervous system. Instead of releasing their neurotransmitters at a synapse, these neurons release them into the blood. Thus, although part of the nervous system, the adrenal medulla functions as an endocrine gland.The adrenal medulla releases:

  • adrenaline (also called epinephrine) and
  • noradrenaline (also called norepinephrine)

Both are derived from the amino acid tyrosine.

Release of adrenaline and noradrenaline is triggered by nervous stimulation in response to physical or mental stress. The hormones bind to adrenergic receptors  transmembrane proteins in the plasma membrane of many cell types.

Some of the effects are:

  • increase in the rate and strength of the heartbeat resulting in increased blood pressure;
  • blood shunted from the skin and viscera to the skeletal muscles, coronary arteries, liver, and brain;
  • rise in blood sugar;
  • increased metabolic rate;
  • bronchi dilate;
  • pupils dilate;
  • hair stands on end (gooseflesh in humans);
  • clotting time of the blood is reduced;
  • increased ACTH secretion from the anterior lobe of the pituitary.

All of these effects prepare the body to take immediate and vigorous action.

Heart is a hollow muscular organ , that is located in the middle mediastinum  between the two bony structures of the sternum and the vertebral column ( a very important location for applying Cardiopulmonary Resuscitation - CPR- ) .
It has a shape of clenched fist , which weighs about 300 grams ( with mild variation between male and female ).
  Heart has an apex that is anteriorly , inferiorly , and leftward oriented , and a base , that is posteriorly , superiorly and rightward oriented   .
 In addition to its apex and base the heart has anterior , posterior and left surfaces.
 
 The wall of the heart is composed of three layers :
 
1. Endocardium : The innermost layer , which lines the heart chambers and is in direct contact with the blood . It is composed of endothelial cells that are similar to those , that line the blood vessels , and of connective tissue too. 
 Endocardium has a smooth surface that prevents blood clotting, as it ensures laminar blood flow .

 Clinical Physiology 
 Endocarditis is the inflammation of the endocardium , which is resistant to antibiotic treatment and difficult to cure.Endocarditis usually involves heart valves and chordae tendineae too.

 2. Myocardium  : The middle layer of the cardiac wall . It is the thickest among the three layers , and is composed of two types of cardiac muscles :
a. contractile muscle cells (form about 98-99% of the cardiac muscle ) .
 b- non-contractile muscle cells ( form about 1-2 % of the cardiac muscles and are the cells that form excitatory-conductive system of the heart).
 The cardiac muscle cells are similar to the skeletal muscles in that they are striated , but similar to the smooth muscles in being involuntary and connected to each others via gap junctions , that facilitate conduction of electrical potential from one cell to the others. Desmosomes adhere cardiac muscle cells to each others .

 3- Epicardium :  is the outermost and protective layer of the heart . It is composed of connective tissue , and form the inner layer of the pericardium ( visceral pericardium - see bellow).

 Pericardium: 
The heart is surrounded by a fluid-fill sac , which is known as pericardium . Pericardium is composed of two layers ( doubled layer membrane ) , between which a fluid-fill pericardial cavity exist .

 The outer layer is called fibrous pericardium , while the inner layer is called serous pericardium , which is subdivided into parietal pericardium and visceral pericardium . The visceral pericardium is the previously mentioned outermost layer of heart ( epicardium) .
Pericardial sac plays an important role in protection of heart from external hazards and infections , as it fixes the heart and limits its motion. It also prevents excessive dilation of the heart.

Clinical physiology: 

When there is excessive fluid in the pericardial cavity as a result of pericardial effusion , a cardiac tamponade will develop . cardiac tamponade means compression of the heart within the pericardial sac , which will prevent the relaxation of the heart ( heart will not be able to fully expand ) , and thus the circulating blood volume will be decreased (obstructive shock) . This is a life threatening situation which has to be urgently cured by  pericardiocentesis . 


Chambers of the heart : 

Heart has four chambers : two atria and two ventricles . The two right and left atria are separated from the two ventricles by the fibrous skeleton , which involves the right ( tricuspid ) and left ( bicuspid ) valves. Right and left atria are separated from each other by the interatrial  septum .
The two ventricles are separated by the interventricular septum.Interventricular septum is muscular in its lower thick part and fibrous in its upper thin part.
The two atria holds the blood returning from the veins and empty it only in a given right moment into the ventricles. Ventricles pump the blood into the arteries . 

Heart valves : 


There are four valves in the heart : Two atrioventricular valves and two semi-lunar valves:
1. Atrioventricular ( AV ) valves: These valves are found between the atria and ventricles , depending on the number of  the leaflets , the right atrioventricular valve is also called tricuspid valve (has three leaflets ) , while the left one is called bicuspid valve (has two leaflets ) . The shape of the bicuspid valve is similar to the mitre of bishop , so it is also called the mitral valve.
The leaflets of the valves are attached to fibrous threads (composed of collagen fibers ) , known as chordae tendineae , which from their side are attached to papillary muscles in the ventricles. These valves prevent backward flow of blood from ventricles during the systole. 

2. Semi-lunar valves : 

These valves are located on the base of the arteries ( aorta and pulmonary artery ) . They prevent the backward flow of blood from the arteries into ventricles.
The structure of the semilunar valves is quite different from that of the AV valves , as they have crescent-shaped cusps that do not have chorda tendinea , instead these cusps are like pockets which are filled of blood when it returns to the ventricles from the lumen of arteries during the diastole  , so they get closed and prevent the backward flow of blood.

Production of Hormones

The kidneys produce and interact with several hormones that are involved in the control of systems outside of the urinary system.

Calcitriol. Calcitriol is the active form of vitamin D in the human body. It is produced by the kidneys from precursor molecules produced by UV radiation striking the skin. Calcitriol works together with parathyroid hormone (PTH) to raise the level of calcium ions in the bloodstream. When the level of calcium ions in the blood drops below a threshold level, the parathyroid glands release PTH, which in turn stimulates the kidneys to release calcitriol. Calcitriol promotes the small intestine to absorb calcium from food and deposit it into the bloodstream. It also stimulates the osteoclasts of the skeletal system to break down bone matrix to release calcium ions into the blood.
 
Erythropoietin. Erythropoietin, also known as EPO, is a hormone that is produced by the kidneys to stimulate the production of red blood cells. The kidneys monitor the condition of the blood that passes through their capillaries, including the oxygen-carrying capacity of the blood. When the blood becomes hypoxic, meaning that it is carrying deficient levels of oxygen, cells lining the capillaries begin producing EPO and release it into the bloodstream. EPO travels through the blood to the red bone marrow, where it stimulates hematopoietic cells to increase their rate of red blood cell production. Red blood cells contain hemoglobin, which greatly increases the blood’s oxygen-carrying capacity and effectively ends the hypoxic conditions.
 
Renin. Renin is not a hormone itself, but an enzyme that the kidneys produce to start the renin-angiotensin system (RAS). The RAS increases blood volume and blood pressure in response to low blood pressure, blood loss, or dehydration. Renin is released into the blood where it catalyzes angiotensinogen from the liver into angiotensin I. Angiotensin I is further catalyzed by another enzyme into Angiotensin II.

Angiotensin II stimulates several processes, including stimulating the adrenal cortex to produce the hormone aldosterone. Aldosterone then changes the function of the kidneys to increase the reabsorption of water and sodium ions into the blood, increasing blood volume and raising blood pressure. Negative feedback from increased blood pressure finally turns off the RAS to maintain healthy blood pressure levels.

Heart sounds


Heart sounds are a result of beating heart and resultant blood flow . that could be detected by a stethoscope during auscultation . Auscultation is a part of physical examination that doctors have to practice them perfectly.
Before discussion the origin and nature of the heart sounds we have to distinguish between the heart sounds and hurt murmurs. Heart murmurs are pathological noises that results from abnormal blood flow in the heart or blood vessels.
Physiologically , blood flow has a laminar pattern , which means that blood flows in form of layers , where the central layer is the most rapid . Laminar blood flow could be turned into turbulent one .

Turbulent blood flow is a result of stenotic ( narrowed ) valves or blood vessels , insufficient valves , roughened vessels` wall or endocardium ,  and many diseases . The turbulent blood flow causes noisy murmurs inside or outside the heart.

Heart sounds ( especially first and second sounds ) are mainly a result of closure of the valves of the heart . While the third sound is a result of vibration of ventricular wall and the leaflets of the opened AV valves after rapid inflow of blood from the atria to ventricles . 

Third heart sound is physiologic in children but pathological in adults.

The four heart sound is a result of the atrial systole and vibration of the AV valves , due to blood rush during atrial systole . It is inaudible neither in adults nor in children . It is just detectable by the phonocardiogram .


Characteristic of heart sounds :

1. First heart sound  (S1 , lub ) : a soft and low pitch sound, caused by closure of AV valves.Usually has two components ( M1( mitral ) and T1 ( tricuspid ). Normally M1 preceads T1.

2. Second heart sound ( S2 , dub) : sharp and high pitch sound . caused by closure of semilunar valves. It also has two components A2 ( aortic) and P2 ( pulmonary) . A2 preceads P2.

3. Third heart sound (S3) : low pitched sound.

4. Fourth heart sound ( S4) very low pitched sound.

As we notice : the first three sounds are related to ventricular activity , while the fourth heart sound is related to atrial activity.
Closure of valves is not the direct cause for heart sounds , but sharp blocking of blood of backward returning of blood by the closing valve is the direct cause.
 

Explore by Exams