Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Tubular secretion:

Involves transfer of substances from peritubular capillaries into the tubular lumen. It  involves transepithelial transport in a direction opposite to that of tubular absorption.

Renal tubules can selectively add some substances that have not been filtered to the substances that already have been filtered via tubular secretion.

Tubular secretion mostly function to eliminate foreign  organic ions, hydrogen ions ( as a contribution to acid base balance ), potassium ions ( as a contribution to maintaining optimal plasma K+ level to assure normal proceeding of neural and muscular functions), and urea.
Here we will focus on K+ secretion and will later discuss H+ secretion in acid base balance, while urea secretion will be discussed in water balance.

K+ is filtered in glomerular capillaries and then reabsorbed in proximal convoluted tubules as well as in thick ascending limb of loop of Henley ( Na-2Cl-K symporter)

K+ secretion takes place in collecting tubules (distal nephron) . There are two types of cells in distal nephron:

- Principal cells that reabsorb sodium and secrete K+ .
- Intercalated cells that reabsorb K+ in exchange with H+.


Mechanism of secretion of K+ in principal cells : Two steps


- K+ enters tubular cells by Na/K ATPase on the basolateral membrane.
- K+ leaves the tubular cells via K+ channels in apical membrane.


Aldosterone is a necessary regulatory factor.

If there is increased level of K+ in plasma,excessive K+ is secreted , some of which is reabsorbed back to the plasma in exchange with H+ via the intercalated cells.        

The defecation reflex:

As a result of the mass movements, pressure is exerted on the rectum and on the internal anal sphincter, which is smooth muscle, resulting in its involuntary relaxation. Afferent impulses are sent to the brain indicating the need to defecate. The external sphincter is voluntary muscle and is controlled by the voluntary nervous system. This sphincter is relaxed along with contraction of the rectal and abdominal muscles in the defecation reflex

A heart rate that is persistently greater than 100bpm is termed tachycardia. A heart rate that is persistantly lower than 60 pulse per min  is termed bradycardia. Let's examine some factors that could cause a change in heart rate:

  • Increased heart rate can be caused by:
    • Increased output of the cardioacceleratory center. In other words, greater activity of sympathetic nerves running to the heart and a greater release of norepinephrine on the heart.
    • Decreased output of the cardioinhibitory center. In other words, less vagus nerve activity and a decrease in the release of acetylcholine on the heart.
    • Increased release of the hormone epinephrine by the adrenal glands.
    • Nicotine.
    • Caffeine.
    • Hyperthyroidism - i.e., an overactive thyroid gland. This would lead to an increased amount of the hormone thyroxine in the blood.
  • Decreased heart rate can be caused by:
    • Decreased activity of the cardioacceleratory center.
    • Increased activity of the cardioinhibitory center.
    • Many others.

Contractility : Means ability of cardiac muscle to convert electrical energy of action potential into mechanical energy ( work).
The excitation- contraction coupling of cardiac muscle is similar to that of skeletal muscle , except the lack of motor nerve stimulation. 

Cardiac muscle is a self-excited muscle , but the principles of contraction are the same . There are many rules that control the contractility of the cardiac muscles, which are:

1. All or none rule: due to the syncytial nature of the cardiac muscle.There are atrial syncytium and ventricular syncytium . This rule makes the heart an efficient pump.

2. Staircase phenomenon : means gradual increase in muscle contraction following rapidly repeated stimulation..

3. Starling`s law of the heart: The greater the initial length of cardiac muscle fiber , the greater the force of contraction. The initial length is determined by the degree of diastolic filling .The pericardium prevents overstretching of heart , and allows optimal increase in diastolic volume.

Thankful to this law , the heart is able to pump any amount of blood that it receives. But overstretching of cardiac muscle fibers may cause heart failure.

Factors affecting  contractility ( inotropism)

I. Positive inotropic factors:

1. sympathetic stimulation: by increasing the permeability of sarcolemma to calcium.
2. moderate increase in temperature . This due to increase metabolism to increase ATP , decrease viscosity of myocardial structures, and increasing calcium influx.
3. Catecholamines , thyroid hormone, and glucagon hormones.
4. mild alkalosis
5. digitalis
6. Xanthines ( caffeine and theophylline )

II. Negative inotropic factors:

1. Parasympathetic stimulation : ( limited to atrial contraction)
2. Acidosis
3. Severe alkalosis
4. excessive warming and cooling .
5. Drugs ;like : Quinidine , Procainamide , and barbiturates .
6. Diphtheria and typhoid toxins.

An anti-diruetic is a substance that decreases urine volume, and ADH is the primary example of it within the body. ADH is a hormone secreted from the posterior pituitary gland in response to increased plasma osmolarity (i.e., increased ion concentration in the blood), which is generally due to an increased concentration of ions relative to the volume of plasma, or decreased plasma volume.

The increased plasma osmolarity is sensed by osmoreceptors in the hypothalamus, which will stimulate the posterior pituitary gland to release ADH. ADH will then act on the nephrons of the kidneys to cause a decrease in plasma osmolarity and an increase in urine osmolarity.

ADH increases the permeability to water of the distal convoluted tubule and collecting duct, which are normally impermeable to water. This effect causes increased water reabsorption and retention and decreases the volume of urine produced relative to its ion content.

After ADH acts on the nephron to decrease plasma osmolarity (and leads to increased blood volume) and increase urine osmolarity, the osmoreceptors in the hypothalamus will inactivate, and ADH secretion will end. Due to this response, ADH secretion is considered to be a form of negative feedback.

The hepatic portal system

The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:

  • Glucose is removed and converted into glycogen.
  • Other monosaccharides are removed and converted into glucose.
  • Excess amino acids are removed and deaminated.
    • The amino group is converted into urea.
    • The residue can then enter the pathways of cellular respiration and be oxidized for energy.
  • Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.

The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.

Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by

  • converting its glycogen stores to glucose (glycogenolysis)
  • converting certain amino acids into glucose (gluconeogenesis).

The Stomach :

The wall of the stomach is lined with millions of gastric glands, which together secrete 400–800 ml of gastric juice at each meal. Three kinds of cells are found in the gastric glands

  • parietal cells
  • chief cells
  • mucus-secreting cells

Parietal cells : secrete

Hydrochloric acid : Parietal cells contain a H+ ATPase. This transmembrane protein secretes H+ ions (protons) by active transport, using the energy of ATP.

Intrinsic factor: Intrinsic factor is a protein that binds ingested vitamin B12 and enables it to be absorbed by the intestine. A deficiency of intrinsic factor  as a result of an autoimmune attack against parietal cells  causes pernicious anemia.

Chief Cells : The chief cells synthesize and secrete pepsinogen, the precursor to the proteolytic enzyme pepsin.

Secretion by the gastric glands is stimulated by the hormone gastrin. Gastrin is released by endocrine cells in the stomach in response to the arrival of food.

Explore by Exams