Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Lipids:

  • about 40% of the dry mass of a typical cell
  • composed largely of carbon & hydrogen
  • generally insoluble in water
  • involved mainly with long-term energy storage; other functions are as structural components (as in the case of phospholipids that are the major building block in cell membranes) and as "messengers" (hormones) that play roles in communications within and between cells
  • Subclasses include:
    • Triglycerides - consist of one glycerol molecule + 3 fatty acids (e.g., stearic acid in the diagram below). Fatty acids typically consist of chains of 16 or 18 carbons (plus lots of hydrogens).
    • phospholipids - Composed of 2 fatty acids, glycerol, phosphate and polar groups , phosphate group (-PO4) substitutes for one fatty acid & these lipids are an important component of cell membranes

steroids - have 4 rings- cholesterol, some hormones, found in membranes include testosterone, estrogen, & cholesterol

Bleeding Disorders

A deficiency of a clotting factor can lead to uncontrolled bleeding.

The deficiency may arise because

  • not enough of the factor is produced or
  • a mutant version of the factor fails to perform properly.

Examples:

  • von Willebrand disease (the most common)
  • hemophilia A for factor 8 deficiency
  • hemophilia B for factor 9 deficiency.
  • hemophilia C for factor 11 deficiency

In some cases of von Willebrand disease, either a deficient level or a mutant version of the factor eliminates its protective effect on factor 8. The resulting low level of factor 8 mimics hemophilia A.

1. Automatic control (sensory) of respiration is in - brainstem (midbrain) 

2. Behavioral/voluntary control is in - the cortex

3. Alveolar ventilation -the amount of atmospheric air that actually reaches the alveolar per breath and that can participate in the exchange of gasses between alveoli and blood

4. Only way to increase gas exchange in alveolar capillaries - perfusion-limited gas exchange 

5. Pulmonary ventiliation not effected by - concentration of bicarbonate ions

6. Central chemoreceptors - medulla -  CO2, O2 and H+ concentrations

7. Peripheral chemoreceptors - carotid and aortic bodies- PO2, PCO2 and pH 

8. Major stimulus for respiratory centers - arterial PCO2 

9. Rhythmic breathing depends on 
1. continuous (tonic) inspiratory drive from DRG (dorsal respiratory group)
2. intermittent (phasic) expiratory input from cerebrum, thalamus, cranial nerves and ascending spinal cord sensory tracts

10. Primary site for gas exchange - type I epithelial cells for alveoli

 

Factors , affecting glomerular filtration rate :

 Factors that may influence the different pressure forces , or the filtration coefficient will affect the glomerular filtration rate . 
 
1. Dehydration : Causes decrease hydrostatic pressure , and thus decreases GFR
2- Liver diseases that may decrease the plasma proteins and decrease the oncotic pressure , and thus increases glomerular filtration rate .
3- Sympathetic stimulation : will decrease the diameter of afferent arteriole and thus decreases glomerular filtration rate.
4- Renal diseases : Nephrotic syndrome for example decreases the number of working nephrons and thus decreases the filtration coefficient and thus decreases the glomerular filtration rate.
Glomerulonephritis will causes thickening of the glomerular basement membrane and thus decreases the glomerular filtration rate by decreasing the filtration coefficient too.

Neurophysiology

Transmission of an action potential. This occurs in two ways:

1) across the synapse - synaptic transmission. This is a chemical process, the result of a chemical neurotransmitter.

2) along the axon - membrane transmission. This is the propagation of the action potential itself along the membrane of the axon.

Synaptic transmission - What you learned about the neuromuscular junction is mostly applicable here as well. The major differences in our current discussion are:

1) Transmission across the synapse does not necessarily result in an action potential. Instead, small local potentials are produced which must add together in summation to produce an action potential.

2) Although ACh is a common neurotransmitter, there are many others and the exact effect at the synapse depends on the neurotransmitter involved.

3) Neurotransmitters can be excitatory or inhibitory. The result might be to turn off the next neuron rather than to produce an action potential

The basic steps of synaptic transmission are the same as described at the neuromuscular junction

1) Impulse arrives at the axon terminus causing opening of Ca2+ channels and allows Ca2+  to enter the axon. The calcium ions are in the extracellular fluid, pumped there much like sodium is pumped. Calcium is just an intermediate in both neuromuscular and synaptic transmission.

2) Ca2+  causes vesicles containing neurotransmitter to release the chemical into the synapse by exocytosis across the pre-synaptic membrane.

3) The neurotransmitter binds to the post-synaptic receptors. These receptors are linked to chemically gated ion channels and these channels may open or close as a result of binding to the receptors to cause a graded potential which can be either depolarization, or hyperpolarization depending on the transmitter. Depolarization results from opening of Na+ gates and is called an EPSP. Hyperpolarization could result from opening of K+ gates and is called IPSP. 

4) Graded potentials spread and overlap and can summate to produce a threshold depolarization and an action potential when they stimulate voltage gated ion channels in the neuron's trigger region.

5) The neurotransmitter is broken down or removed from the synapse in order for the receptors to receive the next stimulus. As we learned there are enzymes for some neurotransmitters such as the Ach-E which breaks down acetylcholine. Monoamine oxidase (MAO) is an enzyme which breaks down the catecholamines (epinephrine, nor-epinephrine, dopamine) and nor-epinephrine (which is an important autonomic neurotransmitter) is removed by the axon as well in a process known as reuptake. Other transmitters may just diffuse away.

Graded Potentials - these are small, local depolarizations or hyperpolarizations which can spread and summate to produce a threshold depolarization. Small because they are less than that needed for threshold in the case of the depolarizing variety. Local means they only spread a few mm on the membrane and decline in intensity with increased distance from the point of the stimulus. The depolarizations are called EPSPs, excitatory post-synaptic potentials, because they tend to lead to an action potential which excites or turns the post-synaptic neuron on. Hyperpolarizations are called IPSPs, inhibitory post-synaptic potentials, because they tend to inhibit an action potential and thus turn the neuron off.

Summation - the EPSPs and IPSPs will add together to produce a net depolarization (or hyperpolarization).

Temporal summation- this is analogous to the frequency (wave, tetany) summation discussed for muscle. Many EPSPs occurring in a short period of time (e.g. with high frequency) can summate to produce threshold depolarization. This occurs when high intensity stimulus results in a high frequency of EPSPs.

Spatial summation - this is analogous to quantal summation in a muscle. It means that there are many stimuli occurring simultaneously. Their depolarizations spread and overlap and can build on one another to sum and produce threshold depolarization.

Inhibition - When the brain causes an IPSP in advance of a reflex pathway being stimulated, it reduces the likelihood of the reflex occurring by increasing the depolarization required. The pathway can still work, but only with more than the usual number or degree of stimulation. We inhibit reflexes when allowing ourselves to be given an injection or blood test for instance.

Facilitation - When the brain causes an EPSP in advance of a reflex pathway being stimulated, it makes the reflex more likely to occur, requiring less additional stimulation. When we anticipate a stimulus we often facilitate the reflex.

Learned Reflexes - Many athletic and other routine activities involve learned reflexes. These are reflex pathways facilitated by the brain. We learn the pathways by performing them over and over again and they become facilitated. This is how we can perfect our athletic performance, but only if we learn and practice them correctly. It is difficult to "unlearn" improper techniques once they are established reflexes. Like "riding a bike" they may stay with you for your entire life!

Post-tetanic potentiation - This occurs when we perform a rote task or other repetitive action. At first we may be clumsy at it, but after continuous use (post-tetanic) we become more efficient at it (potentiation). These actions may eventually become learned reflexes

The Action Potential

The trigger region of a neuron is the region where the voltage gated channels begin. When summation results in threshold depolarization in the trigger region of a neuron, an action potential is produced. There are both sodium and potassium channels. Each sodium channel has an activation gate and an inactivation gate, while potassium channels have only one gate. 

A) At the resting state the sodium activation gates are closed, sodium inactivation gates are open, and potassium gates are closed. Resting membrane potential is at around -70 mv inside the cell. 

B) Depolarizing phase: The action potential begins with the activation gates of the sodium channels opening, allowing Na+ ions to enter the cell and causing a sudden depolarization which leads to the spike of the action potential. Excess Na+ ions enter the cell causing reversal of potential becoming briefly more positive on the inside of the cell membrane.

C) Repolarizing phase: The sodium inactivation gates close and potassium gates open. This causes Na+ ions to stop entering the cell and  K+ ions  to leave the cell, causing repolarization. Until the membrane is repolarized it cannot be stimulated, called the absolute refractory period.

D) Excess potassium leaves the cell causing a brief hyperpolarization. Sodium activation gates close and potassium gates begin closing. The sodium-potassium pump begins to re-establish the resting membrane potential. During hyperpolarization the membrane can be stimulated but only with a greater than normal depolarization, the relative refractory period.

Action potentials are self-propagated, and once started the action potential progresses along the axon membrane. It is all-or-none, that is there are not different degrees of action potentials. You either have one or you don't.

The Sliding Filament mechanism of muscle contraction.

When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens

 

The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.

It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together

 

Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex. 

The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.

An anti-diruetic is a substance that decreases urine volume, and ADH is the primary example of it within the body. ADH is a hormone secreted from the posterior pituitary gland in response to increased plasma osmolarity (i.e., increased ion concentration in the blood), which is generally due to an increased concentration of ions relative to the volume of plasma, or decreased plasma volume.

The increased plasma osmolarity is sensed by osmoreceptors in the hypothalamus, which will stimulate the posterior pituitary gland to release ADH. ADH will then act on the nephrons of the kidneys to cause a decrease in plasma osmolarity and an increase in urine osmolarity.

ADH increases the permeability to water of the distal convoluted tubule and collecting duct, which are normally impermeable to water. This effect causes increased water reabsorption and retention and decreases the volume of urine produced relative to its ion content.

After ADH acts on the nephron to decrease plasma osmolarity (and leads to increased blood volume) and increase urine osmolarity, the osmoreceptors in the hypothalamus will inactivate, and ADH secretion will end. Due to this response, ADH secretion is considered to be a form of negative feedback.

Explore by Exams