Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Functions

Manufacture - blood proteins - albumen, clotting proteins , urea - nitrogenous waste from amino acid metabolism , bile - excretory for the bile pigments, emulsification of fats by bile salts

Storage - glycogen , iron - as hemosiderin and ferritin , fat soluble vitamins A, D, E, K

Detoxification -alcohol , drugs and medicines , environmental toxins

Protein metabolism -

  • transamination - removing the amine from one amino acid and using it to produce a different amino acid. The body can produce all but the essential amino acids; these must be included in the diet.
  • deamination - removal of the amine group in order to catabolize the remaining keto acid. The amine group enters the blood as urea which is excreted through the kidneys.

Glycemic Regulation - the management of blood glucose.

  • glycogenesis - the conversion of glucose into glycogen.
  • glycogenolysis - the breakdown of glycogen into glucose.

gluconeogenesis - the manufacture of glucose from non carbohydrate sources, mostly protein

The Sliding Filament mechanism of muscle contraction.

When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens

 

The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.

It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together

 

Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex. 

The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.

SPECIAL VISCERAL AFFERENT (SVA) PATHWAYS

Taste

Special visceral afferent (SVA) fibers of cranial nerves VII, IX, and X conduct signals into the solitary tract of the brainstem, ultimately terminating in the nucleus of the solitary tract on the ipsilateral side.

Second-order neurons cross over and ascend through the brainstem in the medial lemniscus to the VPM of the thalamus.

Thalamic projections to area 43 (the primary taste area) of the postcentral gyrus complete the relay.

SVA VII fibers conduct from the chemoreceptors of taste buds on the anterior twothirds of the tongue, while SVA IX fibers conduct taste information from buds on the posterior one-third of the tongue.

SVA X fibers conduct taste signals from those taste cells located throughout the fauces.

Smell

The smell-sensitive cells (olfactory cells) of the olfactory epithelium project their central processes through the cribiform plate of the ethmoid bone, where they synapse with mitral cells. The central processes of the mitral cells pass from the olfactory bulb through the olfactory tract, which divides into a medial and lateral portion The lateral olfactory tract terminates in the prepyriform cortex and parts of the amygdala of the temporal lobe.

These areas represent the primary olfactory cortex. Fibers then project from here to area 28, the secondary olfactory area, for sensory evaluation. The medial olfactory tract projects to the anterior perforated sub­stance, the septum pellucidum, the subcallosal area, and even the contralateral olfactory tract.

Both the medial and lateral olfactory tracts contribute to the visceral reflex pathways, causing the viscerosomatic and viscerovisceral responses.

Glomerular filtration

Kidneys receive about 20% of cardiac output , this is called Renal Blood Flow (RBF) which is approximatley 1.1 L of blood. Plasma in this flow is about 625 ml . It is called Renal Plasma Flow (RPF) .
About 20 % of Plasma entering the glomerular capillaries is filtered into the Bowman`s capsule .
Glomerular filtration rate is about 125 ml/min ( which means 7.5 L/hr and thus 180 L/day) This means that the kidney filters about 180 liters of plasma every day.

The urine flow is about 1ml/min ( about 1.5 liter /day) This means that kidney reabsorbs about 178.5 liters every day .

Filtration occurs through the filtration unit , which includes :

1- endothelial cells of glomerular capillaries , which are fenestrated . Fenestrae are quite small so they prevent filtration of blood cells and most of plasma proteins .

2- Glomerular basement membrane : contains proteoglycan that is negatively charged and repels the negatively charged plasma proteins that may pass the fenestrae due to their small molecular weight like albumin . so the membrane plays an important role in impairing filtration of albumin .

3- Epithelial cells of Bowman`s capsule that have podocytes , which interdigitate to form slits .


Many forces drive the glomerular filtration , which are :

1- Hydrostatic pressure of the capillary blood , which favours filtration . It is about 55 mmHg .

2- Oncotic pressure of the plasma proteins in the glomerular capillary ( opposes filtration ) . It is about 30 mm Hg .

3- Hydrostatic pressure of the Bowman`s capsule , which also opposes filtration. It is about 15 mmHg .

The net pressure is as follows :

Hydrostatic pressure of glomerular capillaries - ( Oncotic pressure of glomerular capillaries + Hydrostatic pressure of the Bowman capsule):
55-(35+10)
=55-45
=10 mmHg .

Te glomerular filtration rate does not depend only on the net pressure , but also on an other value , known as filtration coefficient ( Kf) . The later depends on the surface area of the glomerular capillaries and the hydraulic conductivity of the glomerular capillaries.
 

Characteristics of Facilitated Diffusion & Active Transport - both require the use of carriers that are specific to particular substances (that is, each type of carrier can 'carry' one type of substance) and both can exhibit saturation (movement across a membrane is limited by number of carriers & the speed with which they move materials

Ventilation simply means inhaling and exhaling of air from the atmospheric air into lungs and then exhaling it from the lung into the atmospheric air.
Air pressure gradient has to exist between two atmospheres to enable a gas to move from one atmosphere to an other.
 

During inspiration: the intrathoracic pressure has to be less than that of atmospheric pressure. This could be achieved by decreasing the intrathoracic pressure as follows:
 

Depending on Boyle`s law , the pressure of gas is inversely proportional to the volume of its container. So increasing the intrathoracic volume will decrease the intrathoracic pressure which will allow the atmospheric air to be inhaled (inspiration) . As decreasing the intrathoracic volume will increase the intrathoracic pressure and causes exhaling of air ( expiration)

 

So. Inspiration  could be actively achieved by the contraction of inspiratory muscles : diaphragm and intercostal muscles. While relaxation of the mentioned muscles will passively cause expiration.
 

Contraction of diaphragm will pull the diaphragm down the abdominal cavity ( will move inferiorly)  , and then increase the intrathoracic volume ( vertically)  . Contraction of external intercostal muscle will pull the ribs upward and forward which will additionally increase the intrathoracic volume ( transversely  , the net result will be increasing the intrathoracic volume and decreasing the intrathoracic pressure.
 

Relaxation of diaphragm will move it superiorly during expiration, the relaxation of external intercostal muscles will pull the ribs downward and backward , and the elastic lungs and chest wall will recoil. The net result is decreasing the intrathoracic volume and increasing intrathoracic pressure.
 

All of this occurs during quiet breathing. During forceful inspiration an accessory inspiratory muscle will be involved ( scaleni , sternocleidomastoid , and others) to increase negativity in the intrathoracic pressure more and more.
 

During forceful expiration the accessory expiratory muscles ( internal intercostal muscles and abdominal muscles ) will be involved to decrease the intrathoracic volume  more and more and then to increase  intrathoracic pressure more and more.

The pressure within the alveoli is called intralveolar  pressure . Between the two phases of respiration it is equal to the atmospheric pressure. It is decreased during inspiration ( about 1 cm H2O ) and increased during expiration ( about +1 cm H2O ) . This difference allow entering of 0.5 L of air into the lungs.

Intrapleural pressure is the pressure of thin fluid between the two pleural layers . It is a slight negative pressure. At the beginning of inspiration it is about -5 cm H2O and reachs -7.5 cm H2O at the end or inspiration.

At the beginning of expiration the intrapleural pressure is -7.5 cm H2O and reaches -5 cmH2O at the end of expiration.
The difference between intralveolar pressure and intrapleural pressure is called transpulmonary pressure.

 

 

Factors , affecting ventilation :
 

Resistance : Gradual decreasing of the diameter of respiratory airway increase the resistance to air flow.
 

Compliance : means the ease , which the lungs expand.It depends on both the elastic forces of the lungs and the elastic forces , caused by the the surface tension of the fluid, lining the alveoli.
 

Surface tension: Molecules of water have tendency to attract each other on the surface of water adjacent to air. In alveoli the surface tension caused by the fluid in the inner surface of the alveoli  may cause collapse of alveoli . The surface tension is decreased by the surfactant .

 

Surfactant is a mixture of phospholipids , proteins and ion m produced by type II pneumocytes.

Immature newborns may suffer from respiratory distress syndrome , due to lack of surfactant which is produced during the last trimester of pregnancy.
 

The elastic fibers of the thoracic wall also participate in lung compliance.

 

Hypoxia

  • Hypoxia is tissue oxygen deficiency
  • Brain is the most sensitive tissue to hypoxia: complete lack of oxygen can cause unconsciousness in 15 sec and irreversible damage within 2 min.
  • Oxygen delivery and use can be interrupted at several sites

 

Type of
Hypoxia

O2 Uptake
in Lungs

Hemoglobin

Circulation

 Tissue O2 Utilization

 Hypoxic

 Low

Normal

Normal

Normal

 Anemic

 Normal

 Low

Normal

Normal

 Ischemic

 Normal

Normal

 Low

Normal

 Histotoxic

 Normal

Normal

Normal

 Low

  • Causes:
    • Hypoxic: high altitude, pulmonary edema, hypoventilation, emphysema, collapsed lung
    • Anemic: iron deficiency, hemoglobin mutations, carbon monoxide poisoning
    • Ischemic: shock, heart failure, embolism
    • Histotoxic: cyanide poisoning (inhibits mitochondria)

 

  • Carbon monoxide (CO) poisoning:
    • CO binds to the same heme Fe atoms that O2 binds to
    • CO displaces oxygen from hemoglobin because it has a 200X greater affinity for hemoglobin.
    • Treatment for CO poisoning: move victim to fresh air. Breathing pure O2 can give faster removal of CO

 

  • Cyanide poisoning:
    • Cyanide inhibits the cytochrome oxidase enzyme of mitochondria
    • Two step treatment for cyanide poisoning:
      • 1) Give nitrites
        • Nitrites convert some hemoglobin to methemoglobin. Methemoglobin pulls cyanide away from mitochondria.
      • 2) Give thiosulfate.
        • Thiosulfate converts the cyanide to less poisonous thiocyanate.

Explore by Exams