NEET MDS Lessons
Physiology
Blood Transfusions
- Some of these units ("whole blood") were transfused directly into patients (e.g., to replace blood lost by trauma or during surgery).
- Most were further fractionated into components, including:
- RBCs. When refrigerated these can be used for up to 42 days.
- platelets. These must be stored at room temperature and thus can be saved for only 5 days.
- plasma. This can be frozen and stored for up to a year.
safety of donated blood
A variety of infectious agents can be present in blood.
- viruses (e.g., HIV-1, hepatitis B and C, HTLV, West Nile virus
- bacteria like the spirochete of syphilis
- protozoans like the agents of malaria and babesiosis
- prions (e.g., the agent of variant Crueutzfeldt-Jakob disease)
and could be transmitted to recipients. To minimize these risks,
- donors are questioned about their possible exposure to these agents;
- each unit of blood is tested for a variety of infectious agents.
Most of these tests are performed with enzyme immunoassays (EIA) and detect antibodies against the agents. blood is now also checked for the presence of the RNA of these RNA viruses:
- HIV-1
- hepatitis C
- West Nile virus
- by the so-called nucleic acid-amplification test (NAT).
Lipids:
- about 40% of the dry mass of a typical cell
- composed largely of carbon & hydrogen
- generally insoluble in water
- involved mainly with long-term energy storage; other functions are as structural components (as in the case of phospholipids that are the major building block in cell membranes) and as "messengers" (hormones) that play roles in communications within and between cells
- Subclasses include:
- Triglycerides - consist of one glycerol molecule + 3 fatty acids (e.g., stearic acid in the diagram below). Fatty acids typically consist of chains of 16 or 18 carbons (plus lots of hydrogens).
- phospholipids - Composed of 2 fatty acids, glycerol, phosphate and polar groups , phosphate group (-PO4) substitutes for one fatty acid & these lipids are an important component of cell membranes
steroids - have 4 rings- cholesterol, some hormones, found in membranes include testosterone, estrogen, & cholesterol
Respiration involves several components:
Ventilation - the exchange of respiratory gases (O2 and CO2) between the atmosphere and the lungs. This involves gas pressures and muscle contractions.
External respiration - the exchange of gases between the lungs and the blood. This involves partial pressures of gases, diffusion, and the chemical reactions involved in transport of O2and CO2.
Internal respiration - the exchange of gases between the blood and the systemic tissues. This involves the same processes as external respiration.
Cellular respiration - the includes the metabolic pathways which utilize oxygen and produce carbon dioxide, which will not be included in this unit.
Ventilation is composed of two parts: inspiration and expiration. Each of these can be described as being either quiet, the process at rest, or forced, the process when active such as when exercising.
Quiet inspiration:
The diaphragm contracts, this causes an increase in volume of the thorax and the lungs, which causes a decrease in pressure of the thorax and lungs, which causes air to enter the lungs, moving down its pressure gradient. Air moves into the lungs to fill the partial vacuum created by the increase in volume.
Forced inspiration:
Other muscles aid in the increase in thoracic and lung volumes.
The scalenes - pull up on the first and second ribs.
The sternocleidomastoid muscles pull up on the clavicle and sternum.
The pectoralis minor pulls forward on the ribs.
The external intercostals are especially important because they spread the ribs apart, thus increasing thoracic volume. It's these muscles whose contraction produces the "costal breathing" during rapid respirations.
Quiet expiration:
The diaphragm relaxes. The elasticity of the muscle tissue and of the lung stroma causes recoil which returns the lungs to their volume before inspiration. The reduced volume causes the pressure in the lungs to increase thus causing air to leave the lungs due to the pressure gradient.
Forced Expiration:
The following muscles aid in reducing the volume of the thorax and lungs:
The internal intercostals - these compress the ribs together
The abdominus rectus and abdominal obliques: internal obliques, external obliques- these muscles push the diaphragm up by compressing the abdomen.
Respiratory output is determined by the minute volume, calculated by multiplying the respiratory rate time the tidal volume.
Minute Volume = Rate (breaths per minute) X Tidal Volume (ml/breath)
Rate of respiration at rest varies from about 12 to 15 . Tidal volume averages 500 ml Assuming a rate of 12 breaths per minute and a tidal volume of 500, the restful minute volume is 6000 ml. Rates can, with strenuous exercise, increase to 30 to 40 and volumes can increase to around half the vital capacity.
Not all of this air ventilates the alveoli, even under maximal conditions. The conducting zone volume is about 150 ml and of each breath this amount does not extend into the respiratory zone. The Alveolar Ventilation Rate, AVR, is the volume per minute ventilating the alveoli and is calculated by multiplying the rate times the (tidal volume-less the conducting zone volume).
AVR = Rate X (Tidal Volume - 150 ml)
For a calculation using the same restful rate and volume as above this yields 4200 ml.
Since each breath sacrifices 150 ml to the conducting zone, more alveolar ventilation occurs when the volume is increased rather than the rate.
During inspiration the pressure inside the lungs (the intrapulmonary pressure) decreases to -1 to -3 mmHg compared to the atmosphere. The variation is related to the forcefulness and depth of inspiration. During expiration the intrapulmonary pressure increases to +1 to +3 mmHg compared to the atmosphere. The pressure oscillates around zero or atmospheric pressure.
The intrapleural pressure is always negative compared to the atmosphere. This is necessary in order to exert a pulling action on the lungs. The pressure varies from about -4 mmHg at the end of expiration, to -8 mmHg and the end of inspiration.
The tendency of the lungs to expand, called compliance or distensibility, is due to the pulling action exerted by the pleural membranes. Expansion is also facilitated by the action of surfactant in preventing the collapse of the alveoli.
The opposite tendency is called elasticity or recoil, and is the process by which the lungs return to their original or resting volume. Recoil is due to the elastic stroma of the lungs and the series elastic elements of the respiratory muscles, particularly the diaphragm.
Heart Failure : Heart failure is inability of the heart to pump the enough amount of blood needed to sustain the needs of organism .
It is usually called congestive heart failure ( CHF) .
To understand the pathophysiology of the heart failure , lets compare it with the physiology of the cardiac output :
Cardiac output =Heart rate X stroke volume
Stroke volume is determined by three determinants : Preload ( venous return ) , contractility , and afterload (peripheral resistance ) . Any disorder of these factors will reduce the ability of the heart to pump blood .
Preload : Any factor that decrease the venous return , either by decreasing the intravenous pressure or increasing the intraatrial pressure will lead to heart failure .
Contractility : Reducing the power of contraction such as in myocarditis , cardiomyopathy , preicardial tamponade ..etc , will lead to heart failure .
Afterload : Any factor that may increase the peripheral resistance such as hypertension , valvular diseases of the heart may cause heart failure.
Pathophysiology : When the heart needs to contract more to meet the increased demand , compensatory mechanisms start to develope to enhance the power of contractility . One of these mechanism is increasing heart rate , which will worsen the situation because this will increase the demands of the myocardial cells themselves . The other one is hypertrophy of the cardiac muscle which may compensate the failure temporarily but then the hypertrophy will be an additional load as the fibers became stiff .
The stroke volume will be reduced , the intraventricular pressure will increase and consequently the intraatrial pressure and then the venous pressure . This will lead to decrease reabsorption of water from the interstitium ( see microcirculation) and then leads to developing of edema ( Pulmonary edema if the failure is left , and systemic edema if the failure is right) .
Functions
Manufacture - blood proteins - albumen, clotting proteins , urea - nitrogenous waste from amino acid metabolism , bile - excretory for the bile pigments, emulsification of fats by bile salts
Storage - glycogen , iron - as hemosiderin and ferritin , fat soluble vitamins A, D, E, K
Detoxification -alcohol , drugs and medicines , environmental toxins
Protein metabolism -
- transamination - removing the amine from one amino acid and using it to produce a different amino acid. The body can produce all but the essential amino acids; these must be included in the diet.
- deamination - removal of the amine group in order to catabolize the remaining keto acid. The amine group enters the blood as urea which is excreted through the kidneys.
Glycemic Regulation - the management of blood glucose.
- glycogenesis - the conversion of glucose into glycogen.
- glycogenolysis - the breakdown of glycogen into glucose.
gluconeogenesis - the manufacture of glucose from non carbohydrate sources, mostly protein
Events in gastric function:
1) Signals from vagus nerve begin gastric secretion in cephalic phase.
2) Physical contact by food triggers release of pepsinogen and H+ in gastric phase.
3) Muscle contraction churns and liquefies chyme and builds pressure toward pyloric sphincter.
4) Gastrin is released into the blood by cells in the pylorus. Gastrin reinforces the other stimuli and acts as a positive feedback mechanism for secretion and motility.
5) The intestinal phase begins when acid chyme enters the duodenum. First more gastrin secretion causes more acid secretion and motility in the stomach.
6) Low pH inhibits gastrin secretion and causes the release of enterogastrones such as GIP into the blood, and causes the enterogastric reflex. These events stop stomach emptying and allow time for digestion in the duodenum before gastrin release again stimulates the stomach.
Exchange of gases:
- External respiration:
- exchange of O2 & CO2 between external environment & the cells of the body
- efficient because alveoli and capillaries have very thin walls & are very abundant (your lungs have about 300 million alveoli with a total surface area of about 75 square meters)
- Internal respiration - intracellular use of O2 to make ATP
- occurs by simple diffusion along partial pressure gradients