Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

COPD and Cancer

A.    Chronic Obstructive Pulmonary Disease (COPD)

1.    Common features of COPD

a.    almost all have smoking history
b.    dyspnea - chronic "gasping" for air
c.    frequent coughing and infections
d.    often leads to respiratory failure

2.    obstructive emphysema - usually results from smoking

a.    enlargement & deterioration of alveoli
b.    loss of elasticity of the lungs
c.    "barrel chest" from bronchiole opening during inhalation & constriction during exhalation

3.    chronic bronchitis - mucus/inflammation of mucosa

B.    Lung Cancer

1.    squamous cell carcinoma (20-40%) - epithelium of the bronchi and bronchioles
2.    adenocarcinoma (25-35%) - cells of bronchiole glands and cells of the alveoli
3.    small cell carcinoma (10-20%) - special lymphocyte-like cells of the bronchi
4.    90% of all lung cancers are in people who smoke or have smoked 
 

Structural Divisions of the nervous system:

1) Central Nervous System (CNS) - the brain and spinal cord.

2) Peripheral Nervous System (PNS) - the nerves, ganglia, receptors, etc

Asthma = Reversible Bronchioconstruction 4%-5% of population
    Extrinsic / Atopic = Allergic, inherited (familia), chromosome 11
    IgE, Chemical Mediators of inflammation
    
a.    Intrinsic = Negative for Allergy, Normal IgE, Negative Allergic Tests

    Nucleotide Imbalance cAMP/cGMP: cAMP = Inhibits mediator release, cGMP = Facilitates mediator release
b.    Intolerance to Asprin (Triad Asthma)
c.    Nasal Polyps & Asthma

d.    Treatment cause, Symptoms in Acute Asthma
    1.    Bronchial dilators
    2.    steroids edema from Inflamation
    3.    Bronchiohygene to prevent Secondary Infection, (Remove Excess Mucus)
    4.    Education

Excitability ( Bathmotropism ) : Excitability means the ability of cardiac muscle to respond to signals. Here we are talking about contractile muscle cells that are excited by the excitatory conductive system and generate an action potential.

Cardiac action potential is similar to action potential in nerve and skeletal muscle tissue , with one difference , which is the presence of plateau phase . Plateau phase is unique for cardiac muscle cells .
The  resting membrane potential for cardiac muscle is about -80 mV.
When the cardiac muscle is stimulated an action potential is generated . The action potential in cardiac muscle is composed of four phases , which are :

1. Depolarization phase (Phase 0 ) :

A result of opening of sodium channels , which increase the permeability to sodium , which will lead to a rapid sodium influx into the cardiac muscle cell.

2. Repolarization : Repolarization in cardiac muscle is slow and triphasic :

a. Phase 1 (early partial repolarization ) : A small fast repolarization , results from potassium eflux and chloride influx.
b. Phase 2 ( Plateau ) : After the early partial depolarization , the membrane remains  depolarized , exhibiting a plateau , which is a unique phase for the cardiac muscle cell. Plateau is due to opening of slow calcium-sodium channels , delay closure of sodium channels , and to decreased potassium eflux.
c. Phase 3  ( Rapid repolarization) :  opening of potassium channels and rapid eflux of potassium.
d. Phase 4 ( Returning to resting level) in other words : The phase of complete repolarization. This due to the work of sodium-potassium pump.


Absolute refractory period:

Coincides wit phase 0,phase1 , and phase 2 . During this period , excitability of the heart is totally abolished . This prevents tetanization of the cardiac muscle and enables the heart to contract and  relax to be filled by blood ..

Relative refractory period : 

Coincides with the rapid repolarization and allows the excitability to be gradually recovered .
Excitation contraction relationship : Contraction of cardiac muscle starts after depolarization and continues about 1.5 time as long as the duration of the action potential and reaches its maximum at the end of the plateau. Relaxation of the muscle starts with the early partial repolarization.

Factors , affecting excitability of cardiac muscle:

I. Positive bathmotropic effect :

1. Sympathetic stimulation : It increase the heart , and thus reduces the duration of the action potentia; . This will shorten the duration of the absolute refractory period , and thus increase the excitability .
2.  Drugs : Catecholamines and  xanthines derivatives .
3. Mild hypoxia and mild ischemia
4. Mild hyperkalemia as it decreases the K+ efflux and opens excess Na+ channels .
5. Hypocalcemia

II. Negative bathmotropic effect :

1. Parasympathetic stimulation: The negative bathmotropic effect is limited to the atrial muscle excitability , because there is no parasympathetic innervation for the ventricles. Parasympathetic stimulation decreases the heart rate , and thus increases the duration of cardiac action potential and thus increases the duration of the absolute refractory period.
2. moderate to severe hypoxia
3. hyponatremia , hypercalcemia , and severe hyperkalemia.

Clinical Physiology : Extrasystole is a pathological situation , due to abnormal impulses , arising from ectopic focus .It is expressed as an abnormal systole that occur during the early diastole .
Extrasystole  is due to a rising of excitability above the normal , which usually occurs after the end of the relative refractory period ( read about staircase phenomenon of Treppe)

Biological Functions are Extremely Sensitive to pH

  • H+ and OH- ions get special attention because they are very reactive
  • Substance which donates H+ ions to solution = acid
  • Substance which donates OH- ions to solution = base
  • Because we deal with H ions over a very wide range of concentration, physiologists have devised a logarithmic unit, pH, to deal with it
    • pH = - log [H+]
    • [H+] is the H ion concentration in moles/liter
    • Because of the way it is defined a high pH indicates low H ion and a low pH indicates high H ion- it takes a while to get used to the strange definition
    • Also because of the way it is defined, a change of 1 pH unit means a 10X change in the concentration of H ions
      • If pH changes by 2 units the H+ concentration changes by 10 X 10 = 100 times
  • Human blood pH is 7.4
    • Blood pH above 7.4 = alkalosis
    • Blood pH below 7.4 = acidosis
  • Body must get rid of ~15 moles of potential acid/day (mostly CO2)
    • CO2 reacts with water to form carbonic acid (H2CO3)
    • Done mostly by lungs & kidney
  • In neutralization H+ and OH- react to form water
  • If the pH changes charges on molecules also change, especially charges on proteins
    • This changes the reactivity of proteins such as enzymes
  • Large pH changes occur as food passes through the intestines.

The thyroid gland is a double-lobed structure located in the neck. Embedded in its rear surface are the four parathyroid glands.

The Thyroid Gland

The thyroid gland synthesizes and secretes:

  • thyroxine (T4) and
  • calcitonin

T4 and T3

Thyroxine (T4 ) is a derivative of the amino acid tyrosine with four atoms of iodine. In the liver, one atom of iodine is removed from T4 converting it into triiodothyronine (T3). T3 is the active hormone. It has many effects on the body. Among the most prominent of these are:

  • an increase in metabolic rate
  • an increase in the rate and strength of the heart beat.

The thyroid cells responsible for the synthesis of T4 take up circulating iodine from the blood. This action, as well as the synthesis of the hormones, is stimulated by the binding of TSH to transmembrane receptors at the cell surface.

Diseases of the thyroid

1. hypothyroid diseases; caused by inadequate production of T3

  • cretinism: hypothyroidism in infancy and childhood leads to stunted growth and intelligence. Can be corrected by giving thyroxine if started early enough.
  • myxedema: hypothyroidism in adults leads to lowered metabolic rate and vigor. Corrected by giving thyroxine.
  • goiter: enlargement of the thyroid gland. Can be caused by:
    • inadequate iodine in the diet with resulting low levels of T4 and T3;
    • an autoimmune attack against components of the thyroid gland (called Hashimoto's thyroiditis).

2. hyperthyroid diseases; caused by excessive secretion of thyroid hormones

Graves´ disease. Autoantibodies against the TSH receptor bind to the receptor mimicking the effect of TSH binding. Result: excessive production of thyroid hormones. Graves´ disease is an example of an autoimmune disease.

Osteoporosis. High levels of thyroid hormones suppress the production of TSH through the negative-feedback mechanism mentioned above. The resulting low level of TSH causes an increase in the numbers of bone-reabsorbing osteoclasts resulting in osteoporosis.

Calcitonin

Calcitonin is a polypeptide of 32 amino acids. The thyroid cells in which it is synthesized have receptors that bind calcium ions (Ca2+) circulating in the blood. These cells monitor the level of circulating Ca2+. A rise in its level stimulates the cells to release calcitonin.

  • bone cells respond by removing Ca2+ from the blood and storing it in the bone
  • kidney cells respond by increasing the excretion of Ca2+

Both types of cells have surface receptors for calcitonin.

Because it promotes the transfer of Ca2+ to bones, calcitonin has been examined as a possible treatment for osteoporosis

Oxygen Transport in Blood: Hemoglobin

A.    Association & Dissociation of Oxygen + Hemoglobin

1.    oxyhemoglobin (HbO2) - oxygen molecule bound
2.    deoxyhemoglobin (HHb) - oxygen unbound
    
H-Hb     +    O2  <= === => HbO2 + H+

3.    binding gets more efficient as each O2 binds
4.    release gets easier as each O2 is released

5.    Several factors regulate AFFINITY of O2

a.    Partial Pressure of O2
b.    temperature
c.    blood pH (acidity)
d.    concentration of “diphosphoglycerate” (DPG)

B.    Effects of Partial Pressure of O2

1.  oxygen-hemoglobin dissociation curve

a.    104 mm (lungs) - 100% saturation (20 ml/100 ml)
b.    40 mm (tissues) - 75% saturation (15 ml/100 ml)
c.    right shift - Decreased Affinity, more O2 unloaded
d.     left shift- Increased Affinity, less O2 unloaded


C.    Effects of Temperature
    
1.    HIGHER Temperature    --> Decreased Affinity (right)
2.    LOWER Temperature        --> Increased Affinity (left)

D.    Effects of pH (Acidity) 

1.    HIGHER pH    --> Increased Affinity (left)
2.    LOWER pH    --> Decreased Affinity (right) "Bohr Effect"
a.    more Carbon Dioxide, lower pH (more H+), more O2 release

E.    Effects of Diphosphoglycerate (DPG)

1.    DPG - produced by anaerobic processes in RBCs
2.    HIGHER DPG    > Decreased Affinity (right)
3.    thyroxine, testosterone, epinephrine, NE - increase RBC metabolism and DPG production, cause RIGHT shift

F.    Oxygen Transport Problems

1.    hypoxia - below normal delivery of Oxygen

a.    anemic hypoxia - low RBC or hemoglobin
b.    stagnant hypoxia - impaired/blocked blood flow
c.    hypoxemic hypoxia - poor lung gas exchange

2.    carbon monoxide poisoning - CO has greater Affinity than Oxygen or Carbon Dioxide 
 

Explore by Exams