Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Bile contains:

  • bile acids. These amphiphilic steroids emulsify ingested fat. The hydrophobic portion of the steroid dissolves in the fat while the negatively-charged side chain interacts with water molecules. The mutual repulsion of these negatively-charged droplets keeps them from coalescing. Thus large globules of fat (liquid at body temperature) are emulsified into tiny droplets (about 1 µm in diameter) that can be more easily digested and absorbed.

 

  • bile pigments. These are the products of the breakdown of hemoglobin removed by the liver from old red blood cells. The brownish color of the bile pigments imparts the characteristic brown color of the feces.

Blood is a liquid tissue. Suspended in the watery plasma are seven types of cells and cell fragments.

  • red blood cells (RBCs) or erythrocytes
  • platelets or thrombocytes
  • five kinds of white blood cells (WBCs) or leukocytes
    • Three kinds of granulocytes
      • neutrophils
      • eosinophils
      • basophils
    • Two kinds of leukocytes without granules in their cytoplasm
      • lymphocytes
      • monocytes

Asthma = Reversible Bronchioconstruction 4%-5% of population
    Extrinsic / Atopic = Allergic, inherited (familia), chromosome 11
    IgE, Chemical Mediators of inflammation
    
a.    Intrinsic = Negative for Allergy, Normal IgE, Negative Allergic Tests

    Nucleotide Imbalance cAMP/cGMP: cAMP = Inhibits mediator release, cGMP = Facilitates mediator release
b.    Intolerance to Asprin (Triad Asthma)
c.    Nasal Polyps & Asthma

d.    Treatment cause, Symptoms in Acute Asthma
    1.    Bronchial dilators
    2.    steroids edema from Inflamation
    3.    Bronchiohygene to prevent Secondary Infection, (Remove Excess Mucus)
    4.    Education

Cardiac Control: The Cardiac Center in the medulla.

Outputs:

The cardioacceleratory center sends impulses through the sympathetic nervous system in the cardiac nerves. These fibers innervate the SA node and AV node and the ventricular myocardium. Effects on the SA and AV nodes are an increase in depolarization rate by reducing the resting membrane polarization. Effect on the myocardium is to increase contractility thus increasing force and therefore volume of contraction. Sympathetic stimulation increases both rate and volume of the heart.

The cardioinhibitory center sends impulses through the parasympathetic division, the vagus nerve, to the SA and AV nodes, but only sparingly to the atrial myocardium, and not at all to ventricular myocardium. Its effect is to slow the rate of depolarization by increasing the resting potential, i.e. hyperpolarization.

The parasympathetic division controls the heart at rest, keeping its rhythm slow and regular. This is referred to as normal vagal tone. Parasympathetic effects are inhibited and the sympathetic division exerts its effects during stress, i.e. exercise, emotions, "fight or flight" response, and temperature.

Inputs to the Cardiac Center:

Baroreceptors in the aortic and carotid sinuses. The baroreceptor reflex is responsible for the moment to moment maintenance of normal blood pressure.

Higher brain (hypothalamus): stimulates the center in response to exercise, emotions, "fight or flight", temperature.

Intrinsic Controls of the Heart:

Right Heart Reflex - Pressoreceptors (stretch receptors) in the right atrium respond to stretch due to increased venous return. The reflex acts through a short neural circuit to stimulate the sympathetic nervous system resulting in increased rate and force of contraction. This regulates output to input

The Frank-Starling Law - (Starling's Law of the Heart) - Like skeletal muscle the myocardium has a length tension curve which results in an optimum level of stretch producing the maximum force of contraction. A healthy heart normally operates at a stretch less than this optimum level and when exercise causes increased venous return and increased stretch of the myocardium, the result is increased force of contraction to automatically pump the increased volume out of the heart. I.e. the heart automatically compensates its output to its input.

An important relationship in cardiac output is this one:

Blood Flow =  D Pressure / Resistance to Blood Flow      

The Nerve Impulse

When a nerve is stimulated the resting potential changes. Examples of such stimuli are pressure, electricity, chemicals, etc. Different neurons are sensitive to different stimuli(although most can register pain). The stimulus causes sodium ion channels to open. The rapid change in polarity that moves along the nerve fiber is called the "action potential." In order for an action potential to occur, it must reach threshold. If threshold does not occur, then no action potential can occur. This moving change in polarity has several stages:

Depolarization

The upswing is caused when positively charged sodium ions (Na+) suddenly rush through open sodium gates into a nerve cell. The membrane potential of the stimulated cell undergoes a localized change from -55 millivolts to 0 in a limited area. As additional sodium rushes in, the membrane potential actually reverses its polarity so that the outside of the membrane is negative relative to the inside. During this change of polarity the membrane actually develops a positive value for a moment(+30 millivolts). The change in voltage stimulates the opening of additional sodium channels (called a voltage-gated ion channel). This is an example of a positive feedback loop.

Repolarization

The downswing is caused by the closing of sodium ion channels and the opening of potassium ion channels. Release of positively charged potassium ions (K+) from the nerve cell when potassium gates open. Again, these are opened in response to the positive voltage--they are voltage gated. This expulsion acts to restore the localized negative membrane potential of the cell (about -65 or -70 mV is typical for nerves).


Hyperpolarization

When the potassium ions are below resting potential (-90 mV). Since the cell is hyper polarized, it goes to a refractory phrase.

Refractory phase

The refractory period is a short period of time after the depolarization stage. Shortly after the sodium gates open, they close and go into an inactive conformation. The sodium gates cannot be opened again until the membrane is repolarized to its normal resting potential. The sodium-potassium pump returns sodium ions to the outside and potassium ions to the inside. During the refractory phase this particular area of the nerve cell membrane cannot be depolarized. This refractory area explains why action potentials can only move forward from the point of stimulation.


Factors that affect sensitivity and speed

Sensitivity

Increased permeability of the sodium channel occurs when there is a deficit of calcium ions. When there is a deficit of calcium ions (Ca+2) in the interstitial fluid, the sodium channels are activated (opened) by very little increase of the membrane potential above the normal resting level. The nerve fiber can therefore fire off action potentials spontaneously, resulting in tetany. This could be caused by the lack of hormone from parathyroid glands. It could also be caused by hyperventilation, which leads to a higher pH, which causes calcium to bind and become unavailable.

Speed of Conduction

This area of depolarization/repolarization/recovery moves along a nerve fiber like a very fast wave. In myelinated fibers, conduction is hundreds of times faster because the action potential only occurs at the nodes of Ranvier (pictured below in 'types of neurons') by jumping from node to node. This is called "saltatory" conduction. Damage to the myelin sheath by the disease can cause severe impairment of nerve cell function. Some poisons and drugs interfere with nerve impulses by blocking sodium channels in nerves. See discussion on drug at the end of this outline.

Factors , affecting glomerular filtration rate :

 Factors that may influence the different pressure forces , or the filtration coefficient will affect the glomerular filtration rate . 
 
1. Dehydration : Causes decrease hydrostatic pressure , and thus decreases GFR
2- Liver diseases that may decrease the plasma proteins and decrease the oncotic pressure , and thus increases glomerular filtration rate .
3- Sympathetic stimulation : will decrease the diameter of afferent arteriole and thus decreases glomerular filtration rate.
4- Renal diseases : Nephrotic syndrome for example decreases the number of working nephrons and thus decreases the filtration coefficient and thus decreases the glomerular filtration rate.
Glomerulonephritis will causes thickening of the glomerular basement membrane and thus decreases the glomerular filtration rate by decreasing the filtration coefficient too.

Heart sounds


Heart sounds are a result of beating heart and resultant blood flow . that could be detected by a stethoscope during auscultation . Auscultation is a part of physical examination that doctors have to practice them perfectly.
Before discussion the origin and nature of the heart sounds we have to distinguish between the heart sounds and hurt murmurs. Heart murmurs are pathological noises that results from abnormal blood flow in the heart or blood vessels.
Physiologically , blood flow has a laminar pattern , which means that blood flows in form of layers , where the central layer is the most rapid . Laminar blood flow could be turned into turbulent one .

Turbulent blood flow is a result of stenotic ( narrowed ) valves or blood vessels , insufficient valves , roughened vessels` wall or endocardium ,  and many diseases . The turbulent blood flow causes noisy murmurs inside or outside the heart.

Heart sounds ( especially first and second sounds ) are mainly a result of closure of the valves of the heart . While the third sound is a result of vibration of ventricular wall and the leaflets of the opened AV valves after rapid inflow of blood from the atria to ventricles . 

Third heart sound is physiologic in children but pathological in adults.

The four heart sound is a result of the atrial systole and vibration of the AV valves , due to blood rush during atrial systole . It is inaudible neither in adults nor in children . It is just detectable by the phonocardiogram .


Characteristic of heart sounds :

1. First heart sound  (S1 , lub ) : a soft and low pitch sound, caused by closure of AV valves.Usually has two components ( M1( mitral ) and T1 ( tricuspid ). Normally M1 preceads T1.

2. Second heart sound ( S2 , dub) : sharp and high pitch sound . caused by closure of semilunar valves. It also has two components A2 ( aortic) and P2 ( pulmonary) . A2 preceads P2.

3. Third heart sound (S3) : low pitched sound.

4. Fourth heart sound ( S4) very low pitched sound.

As we notice : the first three sounds are related to ventricular activity , while the fourth heart sound is related to atrial activity.
Closure of valves is not the direct cause for heart sounds , but sharp blocking of blood of backward returning of blood by the closing valve is the direct cause.
 

Explore by Exams