Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Serum Lipids

 

LIPID

Typical values (mg/dl)

Desirable (mg/dl)

Cholesterol (total)

170–210

<200

LDL cholesterol

60–140

<100

HDL cholesterol

35–85

>40

Triglycerides

40–160

<160

 

  • Total cholesterol is the sum of
    • HDL cholesterol
    • LDL cholesterol and
    • 20% of the triglyceride value
  • Note that
    • high LDL values are bad, but
    • high HDL values are good.
  • Using the various values, one can calculate a
    cardiac risk ratio = total cholesterol divided by HDL cholesterol
  • A cardiac risk ratio greater than 7 is considered a warning.

Hormones are carried by the blood throughout the entire body, yet they affect only certain cells.  The specific cells that respond to a given hormone have receptor sites for that hormone.  

 

This is sort of a lock and key mechanism.  If the key fits the lock, then the door will open.  If a hormone fits the receptor site, then there will be an effect.  If a hormone and a receptor site do not match, then there is no reaction.  All of the cells that have receptor sites for a given hormone make up the target tissue for that hormone.  In some cases, the target tissue is localized in a single gland or organ.  In other cases, the target tissue is diffuse and scattered throughout the body so that many areas are affected.  

 

Hormones bring about their characteristic effects on target cells by modifying cellular activity.  Cells in a target tissue have receptor sites for specific hormones.  Receptor sites may be located on the surface of the cell membrane or in the interior of the cell.

 

In general those protein hormones are unable to diffuse through the cell membrane and react with receptor sites on the surface of the cell.  The hormone receptor reaction on the cell membrane activates an enzyme within the membrane, called adenyl cyclase, which diffuses into the cytoplasm.  Within the cell, adenyl cyclase catalyzes or starts the process of removal of phosphates from ATP to produce cyclic adenosine monophosphate or c AMP.  This c AMP activates enzymes within the cytoplasm that alter or change the cellular activity.  The protein hormone, which reacts at the cell membrane, is called the first messenger.  c Amp that brings about the action attributed to the hormone is called the second messenger.  This type of action is relatively rapid because the precursors are already present and they just needed to be activated in some way.  

Production of Hormones

The kidneys produce and interact with several hormones that are involved in the control of systems outside of the urinary system.

Calcitriol. Calcitriol is the active form of vitamin D in the human body. It is produced by the kidneys from precursor molecules produced by UV radiation striking the skin. Calcitriol works together with parathyroid hormone (PTH) to raise the level of calcium ions in the bloodstream. When the level of calcium ions in the blood drops below a threshold level, the parathyroid glands release PTH, which in turn stimulates the kidneys to release calcitriol. Calcitriol promotes the small intestine to absorb calcium from food and deposit it into the bloodstream. It also stimulates the osteoclasts of the skeletal system to break down bone matrix to release calcium ions into the blood.
 
Erythropoietin. Erythropoietin, also known as EPO, is a hormone that is produced by the kidneys to stimulate the production of red blood cells. The kidneys monitor the condition of the blood that passes through their capillaries, including the oxygen-carrying capacity of the blood. When the blood becomes hypoxic, meaning that it is carrying deficient levels of oxygen, cells lining the capillaries begin producing EPO and release it into the bloodstream. EPO travels through the blood to the red bone marrow, where it stimulates hematopoietic cells to increase their rate of red blood cell production. Red blood cells contain hemoglobin, which greatly increases the blood’s oxygen-carrying capacity and effectively ends the hypoxic conditions.
 
Renin. Renin is not a hormone itself, but an enzyme that the kidneys produce to start the renin-angiotensin system (RAS). The RAS increases blood volume and blood pressure in response to low blood pressure, blood loss, or dehydration. Renin is released into the blood where it catalyzes angiotensinogen from the liver into angiotensin I. Angiotensin I is further catalyzed by another enzyme into Angiotensin II.

Angiotensin II stimulates several processes, including stimulating the adrenal cortex to produce the hormone aldosterone. Aldosterone then changes the function of the kidneys to increase the reabsorption of water and sodium ions into the blood, increasing blood volume and raising blood pressure. Negative feedback from increased blood pressure finally turns off the RAS to maintain healthy blood pressure levels.

  • it's the individual pressure exerted independently by a particular gas within a mixture of gasses. The air we breath is a mixture of gasses: primarily nitrogen, oxygen, & carbon dioxide. So, the air you blow into a balloon creates pressure that causes the balloon to expand (& this pressure is generated as all the molecules of nitrogen, oxygen, & carbon dioxide move about & collide with the walls of the balloon). However, the total pressure generated by the air is due in part to nitrogen, in part to oxygen, & in part to carbon dioxide. That part of the total pressure generated by oxygen is the 'partial pressure' of oxygen, while that generated by carbon dioxide is the 'partial pressure' of carbon dioxide. A gas's partial pressure, therefore, is a measure of how much of that gas is present (e.g., in the blood or alveoli). 
     
  • the partial pressure exerted by each gas in a mixture equals the total pressure times the fractional composition of the gas in the mixture. So, given that total atmospheric pressure (at sea level) is about 760 mm Hg and, further, that air is about 21% oxygen, then the partial pressure of oxygen in the air is 0.21 times 760 mm Hg or 160 mm Hg.

Conductivity :

 Means ability of cardiac muscle to propagate electrical impulses through the entire heart ( from one part of the heart to another)  by the excitatory -conductive system of the heart.
 
Excitatory conductive system of the heart involves:


1. Sinoatrial node ( SA node) : Here the initial impulses start and then conducted to the atria through  the anterior inter-atrial pathway ( to the left atrium) , to the atrial muscle mass through the gap junction, and to the Atrioventricular node ( AV node ) through anterior, middle , and posterior inter-nodal pathways.
The average conductive velocity in the atria is 1m/s.

2- AV node : The electrical impulses can not be conducted directly from the atria to the ventricles , because of the  fibrous skeleton , which is an electrical isolator , located between the atria and ventricles. So the only conductive way is the AV node . But there is a delay in the conduction occurs in the AV node .
This delay is due to:
- the smaller size of the nodal fiber.
- The less negative resting membrane potential
- fewer gap junctions.

There are three sites for delay:
- In the transitional fibers , that connect inter-nodal pathways with the AV node ( 0.03 ) .
- AV node itself ( 0.09 s) .
- In the penetrating portion of Bundle of Hiss ( 0.04 s)  .
This delay actually allows atria to empty blood in ventricles during the cardiac cycle before the beginning of ventricular contraction  , as it prevents the ventricles from the pathological high atrial rhythm.
The average velocity of conduction in the AV node is 0.02-0.05 m/s

3- Bundle of Hiss : A continuous with the AV node that passes to the ventricles through the inter-ventricular septum. It is subdivided into : Right and left bundle. The left bundle is also subdivided into two branches: anterior and posterior branches .


4- Purkinje`s fibers: large fibers with velocity of conduction 1.5-4 m/s.
the high velocity of these fibers is due to the abundant gap junctions , and to their nature as very large fibers as well.
The conduction from AV node is a one-way conduction . This prevents the re-entry of cardiac impulses from the ventricles to the atria.
Lastly: The conduction through the ventricular fibers has a velocity of 0.3-0.5 m/s.

Factors , affecting conductivity ( dromotropism)  :

I. Positive dromotropic factors :

1. Sympathetic stimulation : it accelerates conduction and decrease AV delay .
2. Mild warming
3. mild hyperkalemia
4. mild ischemia
5. alkalosis

II. Negative dromotropic factors :

1. Parasympathetic stimulation
2. severe warming
3. cooling
4. Severe hyperkalemia
5. hypokalemia
6. Severe ischemia
7. acidosis
8. digitalis drugs.

The Types of muscle cells. There are three types, red, white, and intermediate.

White Fibers

Fast twitch

Large diameter, used for speed and strength.

Depends on the phosphagen system and on glycolysis-lactic acid.

Stores glycogen for conversion to glucose.

Fewer blood vessels.

Little or no myoglobin.

Red Fibers

Slow twitch

Small diameter, used for endurance.

Depends on aerobic metabolism.

Utilize fats as well as glucose.

Little glycogen storage.

Many blood vessels and much myoglobin give this muscle its reddish appearance.

 

Intermediate Fibers: sometimes called "fast twitch red", these fibers have faster action but rely more on aerobic metabolism and have more endurance. Most muscles are mixtures of the different types. Muscle fiber types and their relative abundance cannot be varied by training, although there is some evidence that prior to maturation of the muscular system the emphasis on certain activities can influence their development

The endocrine system along with the nervous system functions in the regulation of body activities.  The nervous system acts through electrical impulses and neurotransmitters to cause muscle contraction and glandular secretion and interpretation of impulses.  The endocrine system acts through chemical messengers called hormones that influence growth, development, and metabolic activities

Explore by Exams