NEET MDS Lessons
Physiology
GENERAL SOMATIC AFFERENT (GSA) PATHWAYS FROM THE BODY
Pain and Temperature
Pain and temperature information from general somatic receptors is conducted over small-diameter (type A delta and type C) GSA fibers of the spinal nerves into the posterior horn of the spinal cord gray matter .
Fast and Slow Pain
Fast pain, often called sharp or pricking pain, is usually conducted to the CNS over type A delta fibers.
Slow pain, often called burning pain, is conducted to the CNS over smaller-diameter type C fibers.
Touch and Pressure
Touch can be subjectively described as discriminating or crude.
Discriminating (epicritic) touch implies an awareness of an object's shape, texture, three-dimensional qualities, and other fine points. Ability to recognize familiar objects simply by tactile manipulation.
The conscious awareness of body position and movement is called the kinesthetic sens
Crude (protopathic) touch, lacks the fine discrimination described above and doesn't generally give enough information to the brain to enable it to recognize a familiar object by touch alone.
Subconscious Proprioception
Most of the subconscious proprioceptive input is shunted to the cerebellum.
Posterior Funiculus Injury
Certain clinical signs are associated with injury to the dorsal columns.
As might be expected, these are generally caused by impairment to the kinesthetic sense and discriminating touch and pressure pathways.
They include
(1) the inability to recognize limb position,
(2) astereognosis,
(3) loss of two-point discrimination,
(4) loss of vibratory sense, and
(5) a positive Romberg sign.
Astereognosis is the inability to recognize familiar objects by touch alone. When asked to stand erect with feet together and eyes closed, a person with dorsal column damage may sway and fall. This is a positive Romberg sign.
- PATHOPHYSIOLOGY OF THE CONDUCTION SYSTEM
- Cardiac arrhythmias = deviation from normal rate, rhythm
- Heart block (types) = conduction system damage
- Complete Heart Block = 3rd degree block
- idioventricular beat (35-45/min)
- Atria at normal sinus rhythm
- Periods of asystole (dizziness, fainting)
- Causes = myocardial infarction of ventricular septum, surgical correction of interseptal defects, drugs
- Incomplete Heart Block = 2nd degree block
- Not all atrial beats reach ventricle
- Ventricular beat every 2nd, 3rd, etc. atrial beat, (2:1 block, 3:1 block)
- Incomplete Heart Block = 1st degree block
- All atrial beats reach ventricle
- PR interval abnormally long = slower conduction
- Bundle branch blocks (right or left)
- Impulses travel down one side and cross over
- Ventricular rate normal, QRS prolonged or abnormal
- Complete Heart Block = 3rd degree block
- Fibrillation
- Asynchronous contractions = twitching movements
- Loss of synchrony = little to No output
- Atrial Fibrillation
- Irregular ventricular beat & depressed pumping efficiency
- Atrial beat = 125 - 150/min, pulse feeble = 60 - 70/min
- Treatment = Digitalis - reduces rate of ventricular contraction, reduces pulse deficit
- Ventricular Fibrillation
- Almost no blood pumped to systemic system
- ECG = extremely bizarre
- Several minutes = fatal
- Treatment = defibrillation, cardiac massage can maintain some cardiac output
- Heart block (types) = conduction system damage
Ingestion: Food taken in the mouth is
- ground into finer particles by the teeth,
- moistened and lubricated by saliva (secreted by three pairs of salivary glands)
- small amounts of starch are digested by the amylase present in saliva
- the resulting bolus of food is swallowed into the esophagus and
- carried by peristalsis to the stomach.
Blood Pressure
Blood moves through the arteries, arterioles, and capillaries because of the force created by the contraction of the ventricles.
Blood pressure in the arteries.
The surge of blood that occurs at each contraction is transmitted through the elastic walls of the entire arterial system where it can be detected as the pulse. Even during the brief interval when the heart is relaxed — called diastole — there is still pressure in the arteries. When the heart contracts — called systole — the pressure increases.
Blood pressure is expressed as two numbers, e.g., 120/80.
Blood pressure in the capillaries
The pressure of arterial blood is largely dissipated when the blood enters the capillaries. Capillaries are tiny vessels with a diameter just about that of a red blood cell (7.5 µm). Although the diameter of a single capillary is quite small, the number of capillaries supplied by a single arteriole is so great that the total cross-sectional area available for the flow of blood is increased. Therefore, the pressure of the blood as it enters the capillaries decreases.
Blood pressure in the veins
When blood leaves the capillaries and enters the venules and veins, little pressure remains to force it along. Blood in the veins below the heart is helped back up to the heart by the muscle pump. This is simply the squeezing effect of contracting muscles on the veins running through them. One-way flow to the heart is achieved by valves within the veins
Exchanges Between Blood and Cells
With rare exceptions, our blood does not come into direct contact with the cells it nourishes. As blood enters the capillaries surrounding a tissue space, a large fraction of it is filtered into the tissue space. It is this interstitial or extracellular fluid (ECF) that brings to cells all of their requirements and takes away their products. The number and distribution of capillaries is such that probably no cell is ever farther away than 50 µm from a capillary.
When blood enters the arteriole end of a capillary, it is still under pressure produced by the contraction of the ventricle. As a result of this pressure, a substantial amount of water and some plasma proteins filter through the walls of the capillaries into the tissue space.
Thus fluid, called interstitial fluid, is simply blood plasma minus most of the proteins. (It has the same composition and is formed in the same way as the nephric filtrate in kidneys.)
Interstitial fluid bathes the cells in the tissue space and substances in it can enter the cells by diffusion or active transport. Substances, like carbon dioxide, can diffuse out of cells and into the interstitial fluid.
Near the venous end of a capillary, the blood pressure is greatly reduced .Here another force comes into play. Although the composition of interstitial fluid is similar to that of blood plasma, it contains a smaller concentration of proteins than plasma and thus a somewhat greater concentration of water. This difference sets up an osmotic pressure. Although the osmotic pressure is small, it is greater than the blood pressure at the venous end of the capillary. Consequently, the fluid reenters the capillary here.
Control of the Capillary Beds
An adult human has been estimated to have some 60,000 miles of capillaries with a total surface area of some 800–1000 m2. The total volume of this system is roughly 5 liters, the same as the total volume of blood. However, if the heart and major vessels are to be kept filled, all the capillaries cannot be filled at once. So a continual redirection of blood from organ to organ takes place in response to the changing needs of the body. During vigorous exercise, for example, capillary beds in the skeletal muscles open at the expense of those in the viscera. The reverse occurs after a heavy meal.
The walls of arterioles are encased in smooth muscle. Constriction of arterioles decreases blood flow into the capillary beds they supply while dilation has the opposite effect. In time of danger or other stress, for example, the arterioles supplying the skeletal muscles will be dilated while the bore of those supplying the digestive organs will decrease. These actions are carried out by
- the autonomic nervous system.
- local controls in the capillary beds
The hepatic portal system
The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:
- Glucose is removed and converted into glycogen.
- Other monosaccharides are removed and converted into glucose.
- Excess amino acids are removed and deaminated.
- The amino group is converted into urea.
- The residue can then enter the pathways of cellular respiration and be oxidized for energy.
- Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.
The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.
Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by
- converting its glycogen stores to glucose (glycogenolysis)
- converting certain amino acids into glucose (gluconeogenesis).
Reflexes
A reflex is a direct connection between stimulus and response, which does not require conscious thought. There are voluntary and involuntary reflexes.
The Stretch Reflex:
The stretch reflex in its simplest form involves only 2 neurons, and is therefore sometimes called a 2-neuron reflex. The two neurons are a sensory and a motor neuron. The sensory neuron is stimulated by stretch (extension) of a muscle. Stretch of a muscle normally happens when its antagonist contracts, or artificially when its tendon is stretched, as in the knee jerk reflex. Muscles contain receptors called muscle spindles. These receptors respond to the muscles's stretch. They send stimuli back to the spinal cord through a sensory neuron which connects directly to a motor neuron serving the same muscle. This causes the muscle to contract, reversing the stretch. The stretch reflex is important in helping to coordinate normal movements in which antagonistic muscles are contracted and relaxed in sequence, and in keeping the muscle from overstretching.
Since at the time of the muscle stretch its antagonist was contracting, in order to avoid damage it must be inhibited or tuned off in the reflex. So an additional connection through an interneuron sends an inhibitory pathway to the antagonist of the stretched muscle - this is called reciprocal inhibition.
The Deep Tendon Reflex:
Tendon receptors respond to the contraction of a muscle. Their function, like that of stretch reflexes, is the coordination of muscles and body movements. The deep tendon reflex involves sensory neurons, interneurons, and motor neurons. The response reverses the original stimulus therefore causing relaxation of the muscle stimulated. In order to facilitate that the reflex sends excitatory stimuli to the antagonists causing them to contract - reciprocal activation.
The stretch and tendon reflexes complement one another. When one muscle is stretching and stimulating the stretch reflex, its antagonist is contracting and stimulating the tendon reflex. The two reflexes cause the same responses thus enhancing one another.
The Crossed Extensor Reflex -
The crossed extensor reflex is just a withdrawal reflex on one side with the addition of inhibitory pathways needed to maintain balance and coordination. For example, you step on a nail with your right foot as you are walking along. This will initiate a withdrawal of your right leg. Since your quadriceps muscles, the extensors, were contracting to place your foot forward, they will now be inhibited and the flexors, the hamstrings will now be excited on your right leg. But in order to maintain your balance and not fall down your left leg, which was flexing, will now be extended to plant your left foot (e.g. crossed extensor). So on the left leg the flexor muscles which were contracting will be inhibited, and the extensor muscles will be excited
Pain, Temperature, and Crude Touch and Pressure
General somatic nociceptors, thermoreceptors, and mechanoreceptors sensitive to crude touch and pressure from the face conduct signals to the brainstem over GSA fibers of cranial nerves V, VII, IX, and X.
The afferent fibers involved are processes of monopolar neurons with cell bodies in the semilunar, geniculate, petrosal, and nodose ganglia, respectively.
The central processes of these neurons enter the spinal tract of V, where they descend through the brainstem for a short distance before terminating in the spinal nucleus of V.
Second-order neurons then cross over the opposite side of the brainstem at various levels to enter the ventral trigeminothalamic tract, where they ascend to the VPM of the thalamus.
Finally, third-order neurons project to the "face" area of the cerebral cortex in areas 3, 1, and 2 .
Discriminating Touch and Pressure
Signals are conducted from general somatic mechanoreceptors over GSA fibers of the trigeminal nerve into the principal sensory nucleus of V, located in the middle pons.
Second-order neurons then conduct the signals to the opposite side of the brainstem, where they ascend in the medial lemniscus to the VPM of the thalamus.
Thalamic neurons then project to the "face" region of areas 3, I, and 2 of the cerebral cortex.
Kinesthesia and Subconscious Proprioception
Proprioceptive input from the face is primarily conducted over GSA fibers of the trigeminal nerve.
The peripheral endings of these neurons are the general somatic mechanoreceptors sensitive to both conscious (kinesthetic) and subconscious proprioceptive input.
Their central processes extend from the mesencephalic nucleus to the principal sensory nucleus of V in the pons
The subconscious component is conducted to the cerebellum, while the conscious component travels to the cerebral cortex.
Certain second-order neurons from the principal sensory nucleus relay proprioceptive information concerning subconscious evaluation and integration into the ipsilateral cerebellum.
Other second-order neurons project to the opposite side of the pons and ascend to the VPM of the thalamus as the dorsal trigeminothalamic tract.
Thalamic projections terminate in the face area of the cerebral cortex.