Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

ESSENTIAL FATTY ACIDS (EFAs) Polyunsaturated FAs,such as Linoleic acid and g(gamma)- Linolenic acid, are ESSENTIAL FATTY ACIDS — we cannot make them, and we need them, so we must get them in our diets mostly from plant sources.

Enzymes are protein catalyst produced by a cell and responsible ‘for the high rate’ and specificity of one or more intracellular or extracellular biochemical reactions.

Enzymes are biological catalysts responsible for supporting almost all of the chemical reactions that maintain animal homeostasis. Enzyme reactions are always reversible.

The substance, upon which an enzyme acts, is called as substrate. Enzymes are involved in conversion of substrate into product.

Almost all enzymes are globular proteins consisting either of a single polypeptide or of two or more polypeptides held together (in quaternary structure) by non-covalent bonds. Enzymes do nothing but speed up the rates at which the equilibrium positions of reversible reactions are attained.

 In terms of thermodynamics, enzymes reduce the activation energies of reactions, enabling them to occur much more readily at low temperatures - essential for biological systems.

VITAMIN C: ASCORBIC ACID, ASCORBATE

Vitamin C benefits the body by holding cells together through collagen synthesis; collagen is a connective tissue that holds muscles, bones, and other tissues together. Vitamin C also aids in wound healing, bone and tooth formation, strengthening blood vessel walls, improving immune system function, increasing absorption and utilization of iron, and acting as an antioxidant.

RDA The Recommended Dietary Allowance (RDA) for Vitamin C is 90 mg/day for adult males and 75 mg/day for adult females

Vitamin C Deficiency

Severe vitamin C deficiency result in the disease known as scurvy, causing a loss of collagen strength throughout the body. Loss of collagen results in loose teeth, bleeding and swollen gums, and improper wound healing.

MAGNESIUM

The normal serum level of Magnesium is 1.8 to 2.2. mg/dl.

Functions of Magnesium

(a) Irritability of neuromuscular tissues is lowered by Magnesium

(b) Magnesium deficiency leads to decrease in Insulin dependent uptake of glucose

(c) Magnesium supplementation improves glucose tolerance

Causes such as liver cirrhosis, protein calorie malnutrition and hypo para thyroidism leads to hypomagnesemia

The main causes of hypermagnesemia includes renal failure, hyper para thyroidism, rickets, oxalate poisoning and multiple myeloma.

TRIGLYCEROL

 

Triacylglycerols (formerly triglycerides) are the esters of glycerol with fatty acids. The fats and oils that are widely distributed in both  plants and animals are chemically triacylglycerols.

 

They are insoluble in water and non-polar in character and commonly known as neutral fats.


Triacylglycerols are the most abundant dietary lipids. They are the form in which we store reduced carbon for energy. Each triacylglycerol has a glycerol backbone to which are esterified 3 fatty acids. Most triacylglycerols are "mixed." The three fatty acids differ in chain length and number of double bonds

 

Structures of acylglycerols :

Monoacylglycerols,  diacylglycerols and triacylglycerols, respectively consisting of one, two and three molecules of fatty acids esterified to

a molecule of glycerol

 

Lipases hydrolyze triacylglycerols, releasing one fatty acid at a time, producing  diacylglycerols, and eventually glycerol

 

Glycerol arising from hydrolysis of triacylglycerols is converted to the Glycolysis intermediate dihydroxyacetone phosphate, by reactions catalyzed by:
(1) Glycerol Kinase
(2) Glycerol Phosphate Dehydrogenase

Free fatty acids, which in solution have detergent properties, are transported in the blood bound to albumin, a serum protein produced by the liver.
Several proteins have been identified that facilitate transport of long chain fatty acids into cells, including the plasma membrane protein CD36

Insulin

Insulin is a polypeptide hormone synthesized in the pancreas by β-cells, which construct a single chain molecule called proinsulin. 

Insulin, secreted by the β-cells of the pancreas in response to rising blood glucose levels, is a signal that glucose is abundant.

Insulin binds to a specific receptor on the cell surface and exerts its metabolic effect by a signaling pathway that involves a receptor tyrosine kinase phosphorylation cascade.

The pancreas secretes insulin or glucagon in response to changes in blood glucose.

Each cell type of the islets produces a single hormone: α-cells produce glucagon; β-cells, insulin; and δ-cells, somatostatin.

Insulin secretion

When blood glucose rises, GLUT2 transporters carry glucose into the b-cells, where it is immediately converted to glucose 6-phosphate by hexokinase IV (glucokinase) and enters glycolysis. The increased rate of glucose catabolism raises [ATP], causing the closing of ATP-gated K+ channels in the plasma membrane. Reduced efflux of K+ depolarizes the membrane, thereby opening voltage-sensitive Ca2+ channels in the plasma membrane. The resulting influx of Ca2+ triggers the release of insulin by exocytosis.

Insulin lowers blood glucose by stimulating glucose uptake by the tissues; the reduced blood glucose is detected by the β-cell as a diminished flux through the hexokinase reaction; this slows or stops the release of insulin. This feedback regulation holds blood glucose concentration nearly constant despite large fluctuations in dietary intake.

 

Insulin counters high blood glucose

Insulin stimulates glucose uptake by muscle and adipose tissue, where the glucose is converted to glucose 6-phosphate. In the liver, insulin also activates glycogen synthase and inactivates glycogen phosphorylase, so that much of the glucose 6-phosphate is channelled into glycogen.

Diabetes mellitus, caused by a deficiency in the secretion or action of insulin, is a relatively common disease. There are two major clinical classes of diabetes mellitus: type I diabetes, or insulin-dependent diabetes mellitus (IDDM), and type II diabetes, or non-insulin-dependent diabetes mellitus (NIDDM), also called insulin-resistant diabetes. In type I diabetes, the disease begins early in life and quickly becomes severe. IDDM requires insulin therapy and careful, lifelong control of the balance between dietary intake and insulin dose.

Characteristic symptoms of type I (and type II) diabetes are excessive thirst and frequent urination (polyuria), leading to the intake of large volumes of water (polydipsia)

Type II diabetes is slow to develop (typically in older, obese individuals), and the symptoms are milder.

The Bicarbonate Buffer System

This is the main extracellular buffer system which (also) provides a means for the necessary removal of the CO2 produced by tissue metabolism. The bicarbonate buffer system is the main buffer in blood plasma and consists of carbonic acid as proton donor and bicarbonate as proton acceptor :

 H2CO3 = H+ + HCO3

If there is a change in the ratio in favour of H2CO3, acidosis results.

This change can result from a decrease in [HCO3 ] or from an increase in [H2CO3 ]

Most common forms of acidosis are metabolic or respiratory

Metabolic acidosis is caused by a decrease in [HCO3 ] and occurs, for example, in uncontrolled diabetes with ketosis or as a result of starvation.

Respiratory acidosis is brought about when there is an obstruction to respiration (emphysema, asthma or pneumonia) or depression of respiration (toxic doses of morphine or other respiratory depressants)

Alkalosis results when [HCO3 ] becomes favoured in the bicarbonate/carbonic acid ratio

Metabolic alkalosis occurs when the HCO3  fraction increases with little or no concomitant change in H2CO3

Severe vomiting (loss of H+ as HCl) or ingestion of excessive amounts of sodium bicarbonate (bicarbonate of soda) can produce this condition

 

Respiratory alkalosis is induced by hyperventilation because an excessive removal of CO2 from the blood results in a decrease in [H2CO3 ]

Alkalosis can produce convulsive seizures in children and tetany, hysteria, prolonged hot baths or lack of O2 as high altitudes.

The pH of blood is maintained at 7.4 when the buffer ratio [HCO3 − ] / [ H2CO3] becomes 20

Explore by Exams