Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

LIPOPROTIENS

Lipoproteins Consist of a Nonpolar Core & a Single Surface Layer of Amphipathic Lipids

The nonpolar lipid core consists of mainly triacylglycerol and cholesteryl ester and is surrounded by a single surface layer of amphipathic phospholipid and cholesterol molecules .These are oriented so that their polar groups face outward to the aqueous medium. The protein moiety of a lipoprotein is known as an apolipoprotein or apoprotein,constituting nearly 70% of some HDL and as little as 1% of Chylomicons. Some apolipoproteins are integral and cannot be removed, whereas others can be freely transferred to other lipoproteins.

There  re five types of lipoproteins, namely chylomicrons, very low density lipoproteins(VLDL)  low density lipoproteins (LDL), high density Lipoproteins (HDL) and free fatty acid-albumin complexes.

Riboflavin: Vitamin B2

Riboflavin, or vitamin B2, helps to release energy from foods, promotes good vision, and healthy skin. It also helps to convert the amino acid tryptophan (which makes up protein) into niacin.

RDA Males: 1.3 mg/day; Females: 1.1 mg/day

Deficiency : Symptoms of deficiency include cracks at the corners of the mouth, dermatitis on nose and lips, light sensitivity, cataracts, and a sore, red tongue.

PROPERTIES OF TRIACYLGTYCEROLS

1. Hydrolysis : Triacylglycerols undergo stepwise enzymatic hydrolysis to finally liberate free fatty acids and glycerol.

The process of hydrolysis, catalysed by lipases is important for digestion of fat in the gastrointestinal tract and fat mobilization from the adipose tissues.

2. Saponification : The hydrolysis of triacylglycerols by alkali to produce glycerol and soaps is known as saponification.

3.Rancidity: Rancidity is the term used to represent the deterioration of fats and oils resulting in an unpleasant taste. Fats containing unsaturated fatty acids are more susceptible to rancidity.

Hydrolytic rancidity occurs due to partial hydrolysis of triacylglycerols by bacterial enzymes.

Oxidative rancidity is due to oxidation of unsaturated fatty acids.

This results in the formation of unpleasant products such as dicarboxylic acids, aldehydes, ketones etc.

 

Antioxidants : The substances which can prevent the occurrence of oxidative rancidity are known as antioxidants.

Trace amounts of antioxidants such as tocopherols  (vitamin E), hydroquinone, gallic acid and c,-naphthol are added to the commercial preparations of fats and oils to prevent rancidity. Propylgallate, butylatedhydroxyanisole (BHA)  and butylated hydroxytoluene (BHT) are the antioxidants used in food preservation.

Lipid peroxidation in vivo: In the living cells, lipids undergo oxidation to produce peroxides and free radicals which can damage the tissue. .

The free radicals are believed to cause inflammatory diseases, ageing, cancer , atherosclerosis etc

Iodine number : lt is defined as the grams (number)  of iodine absorbed by 100 g of fat or oil. lodine number is useful to know the relative

unsaturation of fats, and is directly proportional to the content of unsaturated fatty acids

Determination of iodine number will help to know the degree of adulteration of a given oil

Saponification number : lt is defined as the mg  (number) of KOH required to hydrolyse (saponify) one gram of fat or oiL

Reichert-Meissl (RM)  number: lt is defined as the number of ml 0.1 N KOH required to completely neutralize the soluble volatile fatty acids distilled from 5 g fat. RM number is useful in testing the purity of butter since it contains a good concentration of volatile fatty acids (butyric acid, caproic acid and caprylic acid).

Acid number : lt is defined as the number of mg of KOH required to completely neutralize free fatty acids present in one gram fat or oil. In normal circumstances, refined oils should be free from any free fatty acids.

Pantothenic Acid

Pantothenic Acid is involved in energy production, and aids in the formation of hormones and the metabolism of fats, proteins, and carbohydrates from food.

RDA The Adequate Intake (AI) for Pantothenic Acid is 5 mg/day for both adult males and females.

Pantothenic Acid Deficiency

Pantothenic Acid deficiency is uncommon due to its wide availability in most foods.

Erythrocytes and the Pentose Phosphate Pathway

The predominant pathways of carbohydrate metabolism in the red blood cell (RBC) are glycolysis, the PPP and 2,3-bisphosphoglycerate (2,3-BPG) metabolism (refer to discussion of hemoglobin for review of the synthesis and role role of 2,3-BPG).

Glycolysis provides ATP for membrane ion pumps and NADH for re-oxidation of methemoglobin. The PPP supplies the RBC with NADPH to maintain the reduced state of glutathione.

The inability to maintain reduced glutathione in RBCs leads to increased accumulation of peroxides, predominantly H2O2, that in turn results in a weakening of the cell wall and concomitant hemolysis.

Accumulation of H2O2 also leads to increased rates of oxidation of hemoglobin to methemoglobin that also weakens the cell wall.

Glutathione removes peroxides via the action of glutathione peroxidase.

The PPP in erythrocytes is essentially the only pathway for these cells to produce NADPH.

Any defect in the production of NADPH could, therefore, have profound effects on erythrocyte survival.

Amino acids

Proteins are linear polymers of amino acids. Participate in virtually every biological process. Perform diverse functions:
       1. Enzymes: catalyze all reactions in living organisms
       2. Storage and transport
       3. Structural
       4. Mechanical work ( flagella, muscles, separation of chromosomes)
       5. Decoding information (translation, transcription, DNA replication)
       6. Cell-signalling (hormones and receptors)
       7. Defence (antibodies)

COPPER

The normal serum level of copper is 25 to 50 mg/dl.

Functions of copper

(a) Copper is necessary for iron absorption and incorporation of iron into hemoglobin.

(b) It is very essential for tyrosinase activity

(c) It is the co-factor for vitamin C requiring hydroxylation

(d) Copper increases the level of high density lipo protein and protects the heart.

Wilson’s disease

In case of Wilson’s disease ceruloplasmin level in blood is drastically reduced.

Wilson’s disease leads to

(i) Accumulation of copper in liver leads to hepatocellular degeneration and cirrhosis

(ii) Deposition of copper in brain basal ganglia leads to leticular degeneration

(iii) Copper deposits as green pigmented ring around cornea and the condition is called as Kayser-Kleischer ring

Over accumulation of copper can be treated by consumption of diet containg low copper and injection of D-penicillamine, which excretes copper through urine.

Menke’s kidney hair syndrome

 It is X-linked defect. In this condition copper is absorbed by GI tract, but cannot be transported to blood. The defect in transport of copper to blood is due to absence of an intracellular copper binding ATPase.

Explore by Exams