NEET MDS Lessons
Biochemistry
3-D Structure of proteins
Proteins are the main players in the life of a cell. Each protein is a unique sequence of amino acid residues, each of which folds into a unique, stable, three dimentional structure that is biologically functional.
Conformation = spatial arrangement of atoms that depends on rotation of bonds. Can change without breaking covalent bonds.
- Since each residue has a number of possible conformations, and there are many residues in a protein, the number of possible conformations for a protein is enormous.
Native conformation = single, stable shape a protein assumes under physiological conditions.
- In native conformation, rotation around covalent bonds in polypeptide is constrained by a number of factors ( H-bonding, weak interactions, steric interference)
- Biological function of proteins depends completely on its conformation. In biology, shape is everything.
- Proteins can be classified as globular or fibrous.
There are 4 levels of protein structure
- Primary structure
- linear sequence of amino acids
- held by covalent forces
- primary structure determines all oversall shape of folded polypeptides (i.e primary structure determines secondary , tertiary, and quaternary structures)
- Secondary structure
- regions of regularly repeating conformations of the peptide chain (α helices, β sheets)
- maintained by H-bonds between amide hydrogens and carbonyl oxygens of peptide backbone.
- Tertiary structure
- completely folded and compacted polypeptide chain.
- stabilized by interactions of sidechains of non-neighboring amino acid residues (fibrous proteins lack tertiary structure)
- Quaternary structure
- association of two or more polypeptide chains into a multisubunit protein.
Functions of lipids
1. They are the concentrated fuel reserve of the body (triacylglycerols).
2. Lipids are the constituents of membrane structure and regulate the membrane permeability (phospholipids and cholesterol).
3. They serve as a source of fat soluble vitamins (A, D, E and K).
4. Lipids are important as cellular metabolic regulators (steroid hormones and prostaglandins).
5. Lipids protect the internal organs, serve as insulating materials and give shape and smooth appearance to the body.
Glycolysis Pathway
The reactions of Glycolysis take place in the cytosol of cells.
Glucose enters the Glycolysis pathway by conversion to glucose-6-phosphate. Initially, there is energy input corresponding to cleavage of two ~P bonds of ATP.
1. Hexokinase catalyzes: glucose + ATP → glucose-6-phosphate + ADP
ATP binds to the enzyme as a complex with Mg++.
The reaction catalyzed by Hexokinase is highly spontaneous
2. Phosphoglucose Isomerase catalyzes:
glucose-6-phosphate (aldose) → fructose-6-phosphate (ketose)
The Phosphoglucose Isomerase mechanism involves acid/base catalysis, with ring opening, isomerization via an enediolate intermediate, and then ring closure .
3. Phosphofructokinase catalyzes:
fructose-6-phosphate + ATP → fructose-1,6-bisphosphate + ADP
The Phosphofructokinase reaction is the rate-limiting step of Glycolysis. The enzyme is highly regulated.
4. Aldolase catalyzes:
fructose-1,6-bisphosphate → dihydroxyacetone phosphate + glyceraldehyde-3-phosphate
The Aldolase reaction is an aldol cleavage, the reverse of an aldol condensation.
5. Triose Phosphate Isomerase (TIM) catalyzes
dihydroxyacetone phosphate (ketose) → glyceraldehyde-3-phosphate (aldose)
Glycolysis continues from glyceraldehydes-3-phosphate
The equilibrium constant (Keq) for the TIM reaction favors dihydroxyacetone phosphate, but removal of glyceraldehyde-3-phosphate by a subsequent spontaneous reaction allows throughput.
6. Glyceraldehyde-3-phosphate Dehydrogenase catalyzes:
glyceraldehyde-3-phosphate + NAD+ + Pi → 1,3,bisphosphoglycerate + NADH + H+
This is the only step in Glycolysis in which NAD+ is reduced to NADH
A cysteine thiol at the active site of Glyceraldehyde-3-phosphate Dehydrogenase has a role in catalysis .
7. Phosphoglycerate Kinase catalyzes:
1,3-bisphosphoglycerate + ADP → 3-phosphoglycerate + ATP
This transfer of phosphate to ADP, from the carboxyl group on 1,3-bisphosphoglycerate, is reversible
8. Phosphoglycerate Mutase catalyzes: 3-phosphoglycerate → 2-phosphoglycerate
Phosphate is shifted from the hydroxyl on C3 of 3-phosphoglycerate to the hydroxyl on C2.
9. Enolase catalyzes: 2-phosphoglycerate → phosphoenolpyruvate + H2O
This Mg++-dependent dehydration reaction is inhibited by fluoride. Fluorophosphate forms a complex with Mg++ at the active site .
10. Pyruvate Kinase catalyzes: phosphoenolpyruvate + ADP → pyruvate + ATP
This transfer of phosphate from PEP to ADP is spontaneous.
Balance sheet for high energy bonds of ATP:
- 2 ATP expended
- 4 ATP produced (2 from each of two 3C fragments from glucose)
- Net Production of 2~ P bonds of ATP per glucose
FLUORIDE
The safe limit of fluorine is about 1PPM in water. But excess of fluoride causes Flourosis
Flourosis is more dangerous than caries. When Fluoride content is more than 2 PPM, it will cause chronic intestinal upset, gastroenteritis, loss of weight, osteosclerosis, stratification and discoloration of teeth
CLASSIFICATION OF ENZYMES
1. Oxidoreductases : Act on many chemical groupings to add or remove hydrogen atoms. e.g. Lactate dehydrogenase
2. Transferases Transfer functional groups between donor and acceptor molecules. Kinases are specialized transferases that regulate metabolism by transferring phosphate from ATP to other molecules. e.g. Aminotransferase.
3. Hydrolases Add water across a bond, hydrolyzing it. E.g. Acetyl choline esterase
4. Lyases Add water, ammonia or carbon dioxide across double bonds, or remove these elements to produce double bonds. e.g. Aldolase.
5. Isomerases Carry out many kinds of isomerization: L to D isomerizations, mutase reactions (shifts of chemical groups) and others. e.g. Triose phosphate isomerase
6. Ligases Catalyze reactions in which two chemical groups are joined (or ligated) with the use of energy from ATP. e.g. Acetyl CoA carboxylase
Regulation of PTH secretion
Secretion of parathyroid hormone is controlled chiefly by serum [Ca2+] through negative feedback. Calcium-sensing receptors located on parathyroid cells are activated when [Ca2+] is low.
Hypomagnesemia inhibits PTH secretion and also causes resistance to PTH, leading to a form of hypoparathyroidism that is reversible.
Hypermagnesemia also results in inhibition of PTH secretion.
Stimulators of PTH includes decreased serum [Ca2+], mild decreases in serum [Mg2+], and an increase in serum phosphate.
Inhibitors include increased serum [Ca2+], severe decreases in serum [Mg2+], which also produces symptoms of hypoparathyroidism (such as hypocalcemia), and calcitriol.
Classification of Fatty Acids and Triglycerides
Short-chain: 2-4 carbon atoms
Medium-chain: 6-12 carbon atoms
Long-chain: 14-20 carbon atoms
Very long-chain: >20 carbon atoms
• are usually in esterified form as major components of other lipids
A16-carbon fatty acid, with one cis double bond between carbon atoms 9 and 10 may be represented as 16:1 cisD9.
Double bonds in fatty acids usually have the cis configuration. Most naturally occurring fatty acids have an even number of carbon atoms
Examples of fatty acids
18:0 |
stearic acid |
18:1 cisD9 |
oleic acid |
18:2 cisD9,12 |
linoleic acid |
18:3 cisD9,12,15 |
linonenic acid |
20:4 cisD5,8,11,14 |
arachidonic acid |
There is free rotation about C-C bonds in the fatty acid hydrocarbon, except where there is a double bond. Each cis double bond causes a kink in the chain,