Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

Glycolysis enzymes are located in the cytosol of cells.  Pyruvate enters the mitochondrion to be metabolized further

Mitochondrial compartments: The mitochondrial matrix contains Pyruvate Dehydrogenase and enzymes of Krebs Cycle, plus other pathways such as fatty acid oxidation. 

Pyruvate Dehydrogenase catalyzes oxidative decarboxylation of pyruvate, to form acetyl-CoA

FAD (Flavin Adenine Dinucleotide) is a derivative of the B-vitamin riboflavin (dimethylisoalloxazine-ribitol). The flavin ring system undergoes oxidation/reduction as shown below. Whereas NAD+ is a coenzyme that reversibly binds to enzymes, FAD is a prosthetic group, that is permanently part of the complex. 

FAD accepts and donates 2 electrons with 2 protons (2 H):

Thiamine pyrophosphate (TPP) is a derivative of  thiamine (vitamin B1). Nutritional deficiency of thiamine leads to the disease beriberi. Beriberi affects especially the brain, because TPP is required for carbohydrate metabolism, and the brain depends on glucose metabolism for energy

Acetyl CoA, a product of the Pyruvate Dehydrogenase reaction, is a central compound in metabolism. The "high energy" thioester linkage makes it an excellent donor of the acetate moiety

For example, acetyl CoA functions as:

  • input to the Krebs Cycle, where the acetate moiety is further degraded to CO2.
  • donor of acetate for synthesis of fatty acids, ketone bodies, and cholesterol.

 

ATPs  formed in TCA cycle from one molecule of Pyruvate

1. 3ATP            7. 3ATP          5. 3 ATP                     

 8. 1 ATP         9. 2 ATP          11.3 ATP         Total =15 ATP.

 

 ATPS formed from one molecule of Acetyl CoA =12ATP

 

ATPs formed from one molecule of glucose after complete oxidation

One molecule of glucose -->2 molecules of pyruvate

['By glycolysis] ->8 ATP

2 molecules of pyruvate [By TCA cycle] -> 30 ATP

Total = 38 ATP

BIOLOGICAL ROLES OF LIPID

Lipids have the common property of being relatively insoluble in water and soluble in nonpolar solvents such as ether and chloroform. They are important dietary constituents not only because of their high energy value but also because of the fat-soluble vitamins and the essential fatty acids contained in the fat of natural foods

Nonpolar lipids act as electrical insulators, allowing rapid propagation of depolarization waves along myelinated nerves

Combinations of lipid and protein (lipoproteins) are important cellular constituents, occurring both in the cell membrane and in the mitochondria, and serving also as the means of transporting lipids in the blood.

Biotin

 Biotin helps release energy from carbohydrates and aids in the metabolism of fats, proteins and carbohydrates from food.

RDA The Adequate Intake (AI) for Biotin is 30 mcg/day for adult males and females

Biotin Deficiency Biotin deficiency is uncommon under normal circumstances, but symptoms include fatigue, loss of appetite, nausea, vomiting, depression, muscle pains, heart abnormalities and anemia.

FATTY  ACIDS

Fatty acids consist of a hydrocarbon chain with a carboxylic acid at one end.

• are usually in esterified form as major components of other lipids

• are often complexed in triacylglycerols (TAGs)

• most have an even number of carbon atoms (usually 14 to 24)

• are synthesized by concatenation of C2 units.

• C16 & C18 FAs are the most common FAs in higher plants and animals

• Are either:

—saturated (all C-C bonds are single bonds) or

—unsaturated (with one or more double bonds in the chain)

—monounsaturated (a single double bond)

1.Example of monounsaturated FA: Oleic acid 18:1(9) (the number in unsaturated FA parentheses indicates that the double bond is between carbons 9 & 10)

2. Double bonds are almost all in the cis conformation

 

—polyunsaturated (more then one double bond)

Polyunsaturated fatty acids contain 2 or more double bonds. They usually occur at every third carbon atom towards the methyl terminus (-CH3 ) of the molecule. Example of polyunsaturated FA: Linoleic acid 18:2(9,12)

• the number of double bonds in FAs varies from 1 to 4 (usually), but in most bacteria it is rarely more than 1

Saturated FAs are highly flexible molecules that can assume a wide range of conformations because there is relatively free rotation about their C-C bonds.

Factors regulating blood calcium level

(i) Vitamin D

(a) Vitamin D and absorption of calcium: Active form of calcium is calcitriol. Calcitriol enters intestinal wall and binds to cytoplasmic receptor and then binds with DNA causes depression and consequent transcription of gene code for calbindin. Due to increased availability of calbindin, absorption of calcium increases leading to increased blood calcium level.
(b) Vitamin D and Bone: Vitamin D activates osteoblast, bone forming cells & also stimulates secretion of alkaline phosphatase. Due to this enzyme, calcium and phosphorus increase.

(c) Vitamin D and Kidney: Calcitriol increase reabsorption of calcium and phosphorus by renal tubules.

 

(ii) Parathyroid  hormone (PTH)

Normal PTH level in serum is 10-60ng/l.

(a) PTH and bones: In bone, PTH causes demineralization. It also causes recreation of collagenase from osteoclast  leads to loss of matrix and bone resorption. As a result, mucopolysacharides and hydroxyproline are excreted in urine.

(b) PTH and Kidney: In kidney, PTH causes increased reabsorption of calcium but decreases reabsorption of phosphorus from kidney tubules.

(iii) Calcitonin Calcitonin decreases serum calcium level. It inhibits resorption of bone. It decreases the activity of osteoclasts and increases osteoblasts.

Hyper Calcemia When plasma Ca2+ level is more than 11mg/dl is called Hypercalcemia. It is due to parathyroid adenoma or ectopic PTH secreting tumor. calcium excreted in urine decreases excretion of chloride causing hyperchloremic acidosis.

Hypocalcemia Plasma calcium level less than 8mg/dl is called hypocalcemia. Tetany due to accidental surgical removal of parathyroid glands or by autoimmune disease. In tetany, neuromuscular irritability is increased. Increased Q-7 internal in ECG is seen. Main manifestation is carpopedal spasm. Laryngismus and stridor are also observed.

Amino acids

Proteins are linear polymers of amino acids. Participate in virtually every biological process. Perform diverse functions:
       1. Enzymes: catalyze all reactions in living organisms
       2. Storage and transport
       3. Structural
       4. Mechanical work ( flagella, muscles, separation of chromosomes)
       5. Decoding information (translation, transcription, DNA replication)
       6. Cell-signalling (hormones and receptors)
       7. Defence (antibodies)

Glycogen Storage Diseases are genetic enzyme deficiencies associated with excessive glycogen accumulation within cells.

  • When an enzyme defect affects mainly glycogen storage in liver, a common symptom is hypoglycemia (low blood glucose), relating to impaired mobilization of glucose for release to the blood during fasting.
  • When the defect is in muscle tissue, weakness and difficulty with exercise result from inability to increase glucose entry into Glycolysis during exercise.

Various type of Glycogen storage disease are

Type

Name

Enzyme Deficient

I

Von Geirke’s Disease

Glucose -6-phosphate

II

Pompe’s Disease

(1, 4)glucosidase

III

Cori’s Disease

Debranching Enzymes

IV

Andersen’s Disease

Branching Enzymes

V

McArdle’s Disease

Muscles Glycogen Phosphorylase

Explore by Exams