Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

The Hemoglobin Buffer Systems

These buffer systems are involved in buffering CO2 inside erythrocytes. The buffering capacity of hemoglobin depends on its oxygenation and deoxygenation. Inside the erythrocytes, CO2 combines with H2O to form carbonic acid (H2CO3) under the action of carbonic anhydrase.

At the blood pH 7.4, H2CO3 dissociates into H+ and HCO3 and needs immediate buffering.

Anaerobic organisms lack a respiratory chain. They must reoxidize NADH produced in Glycolysis through some other reaction, because NAD+ is needed for the Glyceraldehyde-3-phosphate Dehydrogenase reaction (see above). Usually NADH is reoxidized as pyruvate is converted to a more reduced compound, that may be excreted.

The complete pathway, including Glycolysis and the re-oxidation of NADH, is called fermentation.

For example, Lactate Dehydrogenase catalyzes reduction of the keto group in pyruvate to a hydroxyl, yielding lactate, as NADH is oxidized to NAD+.

Skeletal muscles ferment glucose to lactate during exercise, when aerobic metabolism cannot keep up with energy needs. Lactate released to the blood may be taken up by other tissues, or by muscle after exercise, and converted via the reversible Lactate Dehydrogenase back to pyruvate

Fermentation Pathway, from glucose to lactate (omitting H+):

   glucose + 2 ADP + 2 P→ 2 lactate + 2 ATP

Anaerobic catabolism of glucose yields only 2 “high energy” bonds of ATP.

BIOLOGICAL ROLES OF LIPID

Lipids have the common property of being relatively insoluble in water and soluble in nonpolar solvents such as ether and chloroform. They are important dietary constituents not only because of their high energy value but also because of the fat-soluble vitamins and the essential fatty acids contained in the fat of natural foods

Nonpolar lipids act as electrical insulators, allowing rapid propagation of depolarization waves along myelinated nerves

Combinations of lipid and protein (lipoproteins) are important cellular constituents, occurring both in the cell membrane and in the mitochondria, and serving also as the means of transporting lipids in the blood.

FATTY  ACIDS

Fatty acids consist of a hydrocarbon chain with a carboxylic acid at one end.

• are usually in esterified form as major components of other lipids

• are often complexed in triacylglycerols (TAGs)

• most have an even number of carbon atoms (usually 14 to 24)

• are synthesized by concatenation of C2 units.

• C16 & C18 FAs are the most common FAs in higher plants and animals

• Are either:

—saturated (all C-C bonds are single bonds) or

—unsaturated (with one or more double bonds in the chain)

—monounsaturated (a single double bond)

1.Example of monounsaturated FA: Oleic acid 18:1(9) (the number in unsaturated FA parentheses indicates that the double bond is between carbons 9 & 10)

2. Double bonds are almost all in the cis conformation

 

—polyunsaturated (more then one double bond)

Polyunsaturated fatty acids contain 2 or more double bonds. They usually occur at every third carbon atom towards the methyl terminus (-CH3 ) of the molecule. Example of polyunsaturated FA: Linoleic acid 18:2(9,12)

• the number of double bonds in FAs varies from 1 to 4 (usually), but in most bacteria it is rarely more than 1

Saturated FAs are highly flexible molecules that can assume a wide range of conformations because there is relatively free rotation about their C-C bonds.

Sugar derivatives

Sugar alcohol - lacks an aldehyde or ketone. An example is ribitol.

Sugar acid - the aldehyde at C1, or the hydroxyl on the terminal carbon, is oxidized to a carboxylic acid. Examples are gluconic acid and glucuronic acid

Amino sugar - an amino group substitutes for one of the hydroxyls. An example is glucosamine. The amino group may be acetylated.

N-acetylneuraminate, (N-acetylneuraminic acid, also called sialic acid) is often found as a terminal residue of oligosaccharide chains of glycoproteins. Sialic acid imparts negative charge to glycoproteins, because its carboxyl group tends to dissociate a proton at physiological pH.

Glycosidic bonds: The anomeric hydroxyl group and a hydroxyl group of another sugar or some other compound can join together, splitting out water to form a glycosidic bond.

R-OH + HO-R'   → R-O-R' + H2O

Disaccharides: Maltose, a cleavage product of starch, is a disaccharide with an α (1→4) glycosidic linkage between the C1 hydroxyl of one glucose and the C4 hydroxyl of a second glucose. Maltose is the α anomer, because the O at C1  points down from the ring.

Cellobiose, a product of cellulose breakdown, is the otherwise equivalent β anomer.  The configuration at the anomeric C1 is β (O points up from the ring). The β(1→4) glycosidic linkage is represented as a "zig-zag" line, but one glucose residue is actually flipped over relative to the other.

 

Other disaccharides

  • Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose and fructose. Because the configuration at the anomeric carbon of glucose is α (O points down from the ring), the linkage is designated α (1→2). The full name is α -D-glucopyranosyl-(1→2) β -D- fructopyranose.
  • Lactose, milk sugar, is composed of glucose and galactose with β (→4) linkage → the anomeric hydroxyl of galactose. Its full name is β -D-galactopyranosyl-(1→)- α -D-glucopyranose

Polysaccharides:

Plants store glucose as amylose or amylopectin, glucose polymers collectively called starch. Glucose storage in polymeric form minimizes osmotic effects

Amylose is a glucose polymer with α (1→4) glycosidic linkages, as represented above. The end of the polysaccharide with an anomeric carbon (C1) that is not involved in a glycosidic bond is called the reducing end

Amylopectin is a glucose polymer with mainly α (1→4) linkages, but it also has branches formed by α (1→6) linkages. The branches are generally longer than shown above. The branches produce a compact structure, and provide multiple chain ends at which enzymatic cleavage of the polymer can occur. 

Glycogen, the glucose storage polymer in animals, is similar in structure to amylopectin. But glycogen has more α (1→6) branches. The highly branched structure permits rapid release of glucose from glycogen stores, e.g., in muscle cells during exercise. The ability to rapidly mobilize glucose is more essential to animals than to plants.

 

Cellulose, a major constituent of plant cell walls, consists of long linear chains of glucose, with β (1→4) linkages. Every other glucose in cellulose is flipped over, due to the β linkages. This promotes intrachain and interchain hydrogen bonds, as well as van der Waals interactions, that cause cellulose chains to be straight and rigid, and pack with a crystalline arrangement in thick bundles called microfibrils.

Glycosaminoglycans (mucopolysaccharides) are polymers of repeating disaccharides. Within the disaccharides, the sugars tend to be modified, with acidic groups, amino groups, sulfated hydroxyl and amino groups, etc. Glycosaminoglycans tend to be negatively charged, because of the prevalence of acidic groups.

Hyaluronate is a glycosaminoglycan with a repeating disaccharide consisting of two glucose derivatives, glucuronate (glucuronic acid) and N-acetylglucosamine. The glycosidic linkages are β(1→3) and β(1→4).

When covalently linked to specific core proteins, glycosaminoglycans form complexes called proteoglycans. Some proteoglycans of the extracellular matrix in turn link non-covalently to hyaluronate via protein domains called link modules. For example, in cartilage multiple copies of the aggrecan proteoglycan bind to an extended hyaluronate backbone to form a large complex Versican, another proteoglycan that binds to hyaluronate, is in the extracellular matrix of loose connective tissues.

Heparan sulfate is initially synthesized on a membrane-embedded core protein as a polymer of alternating glucuronate and N-acetylglucosamine residues. Later, in segments of the polymer, glucuronate residues may be converted to a sulfated sugar called iduronic acid, while N-acetylglucosamine residues may be deacetylated and/or sulfated

Heparin, a glycosaminoglycan found in granules of mast cells, has a structure similar to that of heparan sulfates, but is relatively highly sulfated.

Some cell surface heparan sulfate glycosaminoglycans remain covalently linked to core proteins embedded in the plasma membrane. Proteins involved in signaling and adhesion at the cell surface have been identified that recognize and bind segments of heparan sulfate chains having particular patterns of sulfation

Lectins are glycoproteins that recognize and bind to specific oligosaccharides.

  • Concanavalin A and wheat germ agglutinin are plant lectins that have been useful research tools
  • Mannan-binding lectin (MBL) is a glycoprotein found in blood plasma. It associates with cell surface carbohydrates of disease-causing microorganisms, promoting phagocytosis of these organisms as part of the immune response.
  • Selectins are integral proteins of the plasma membrane with lectin-like domains that protrude on the outer surface of mammalian cells. Selectins participate in cell-cell recognition and binding.

Erythrocytes and the Pentose Phosphate Pathway

The predominant pathways of carbohydrate metabolism in the red blood cell (RBC) are glycolysis, the PPP and 2,3-bisphosphoglycerate (2,3-BPG) metabolism (refer to discussion of hemoglobin for review of the synthesis and role role of 2,3-BPG).

Glycolysis provides ATP for membrane ion pumps and NADH for re-oxidation of methemoglobin. The PPP supplies the RBC with NADPH to maintain the reduced state of glutathione.

The inability to maintain reduced glutathione in RBCs leads to increased accumulation of peroxides, predominantly H2O2, that in turn results in a weakening of the cell wall and concomitant hemolysis.

Accumulation of H2O2 also leads to increased rates of oxidation of hemoglobin to methemoglobin that also weakens the cell wall.

Glutathione removes peroxides via the action of glutathione peroxidase.

The PPP in erythrocytes is essentially the only pathway for these cells to produce NADPH.

Any defect in the production of NADPH could, therefore, have profound effects on erythrocyte survival.

BIOLOGICAL BUFFER SYSTEMS 

Cells and organisms maintain a specific and constant cytosolic pH, keeping biomolecules in their optimal ionic state, usually near pH 7. In multicelled organisms, the pH of the extracellular fluids (blood, for example) is also tightly regulated. Constancy of pH is achieved primarily by biological buffers : mixtures of weak acids and their conjugate bases 

Body fluids and their principal buffers


Body fluids                     Principal buffers

Extracellular fluids        {Biocarbonate buffer Protein buffer } 

Intracellular fluids         {Phosphate buffer, Protein }

Erythrocytes                 {Hemoglobin buffer}

Explore by Exams