Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

FATTY  ACIDS

Fatty acids consist of a hydrocarbon chain with a carboxylic acid at one end.

• are usually in esterified form as major components of other lipids

• are often complexed in triacylglycerols (TAGs)

• most have an even number of carbon atoms (usually 14 to 24)

• are synthesized by concatenation of C2 units.

• C16 & C18 FAs are the most common FAs in higher plants and animals

• Are either:

—saturated (all C-C bonds are single bonds) or

—unsaturated (with one or more double bonds in the chain)

—monounsaturated (a single double bond)

1.Example of monounsaturated FA: Oleic acid 18:1(9) (the number in unsaturated FA parentheses indicates that the double bond is between carbons 9 & 10)

2. Double bonds are almost all in the cis conformation

 

—polyunsaturated (more then one double bond)

Polyunsaturated fatty acids contain 2 or more double bonds. They usually occur at every third carbon atom towards the methyl terminus (-CH3 ) of the molecule. Example of polyunsaturated FA: Linoleic acid 18:2(9,12)

• the number of double bonds in FAs varies from 1 to 4 (usually), but in most bacteria it is rarely more than 1

Saturated FAs are highly flexible molecules that can assume a wide range of conformations because there is relatively free rotation about their C-C bonds.

- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.

- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.

- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.

- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.

- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.

- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.

- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.

Keq, Kw and pH

As H2O is the medium of biological systems one must consider the role of this molecule in the dissociation of ions from biological molecules. Water is essentially a neutral molecule but will ionize to a small degree. This can be described by a simple equilibrium equation:

H2O <-------> H+ + OH-

This equilibrium can be calculated as for any reaction:

Keq = [H+][OH-]/[H2O]

Since the concentration of H2O is very high (55.5M) relative to that of the [H+] and [OH-], consideration of it is generally removed from the equation by multiplying both sides by 55.5 yielding a new term, Kw:

Kw = [H+][OH-]

This term is referred to as the ion product. In pure water, to which no acids or bases have been added:

Kw = 1 x 10-14 M2

As Kw is constant, if one considers the case of pure water to which no acids or bases have been added:

[H+] = [OH-] = 1 x 10-7 M

This term can be reduced to reflect the hydrogen ion concentration of any solution. This is termed the pH, where:

pH = -log[H+]

Glucagon

Glucagon, a peptide hormone synthesized and secreted from the α-cells of the islets of Langerhans of pancreas, raises blood glucose levels. The pancreas releases glucagon when blood sugar (glucose) levels fall too low. Glucagon causes the liver to convert stored glycogen into glucose, which is released into the bloodstream. Glucagon and insulin are part of a feedback system that keeps blood glucose levels at a stable level.

 

Regulation and function

Secretion of glucagon is stimulated by hypoglycemia, epinephrine, arginine, alanine, acetylcholine, and cholecystokinin.

Secretion of glucagon is inhibited by somatostatin, insulin, increased free fatty acids and keto acids into the blood, and increased urea production.

Glycogen Metabolism

The formation of glycogen from glucose is called Glycogenesis

 

Glycogen is a polymer of glucose residues linked mainly by a(1→ 4)  glycosidic linkages. There are a(1→6) linkages at branch points. The chains and branches are longer than shown. Glucose is stored as glycogen predominantly in liver and muscle cells

Glycogen Synthesis

Uridine diphosphate glucose (UDP-glucose) is the immediate precursor for glycogen synthesis. As glucose residues are added to glycogen, UDP-glucose is the substrate and UDP is released as a reaction product. Nucleotide diphosphate sugars are precursors also for synthesis of other complex carbohydrates, including oligosaccharide chains of glycoproteins, etc.

UDP-glucose is formed from glucose-1-phosphate and uridine triphosphate (UTP)

glucose-1-phosphate + UTP → UDP-glucose + 2 Pi

Cleavage of PPi is the only energy cost for glycogen synthesis (1P bond per glucose residue)

Glycogenin initiates glycogen synthesis. Glycogenin is an enzyme that catalyzes glycosylation of one of its own tyrosine residues.

Physiological regulation of glycogen metabolism

Both synthesis and breakdown of glycogen are spontaneous. If glycogen synthesis and phosphorolysis were active simultaneously in a cell, there would be a futile cycle with cleavage of 1 P bond per cycle

To prevent such a futile cycle, Glycogen Synthase and Glycogen Phosphorylase are reciprocally regulated, both by allosteric effectors and by covalent modification (phosphorylation)

Glycogen catabolism (breakdown)

Glycogen Phosphorylase catalyzes phosphorolytic cleavage of the →(14) glycosidic linkages of glycogen, releasing glucose-1-phosphate as the reaction product.

Glycogen (n residues) + Pi → glycogen (n-1 residues) + glucose-1-phosphate

 

The Major product of glycogen breakdown is glucose -1-phosphate

Fate of glucose-1-phosphate in relation to other pathways:

Phosphoglucomutase catalyzes the reversible reaction:

Glucose-1-phosphate → Glucose-6-phosphate

The amino acids buffer system

Amino acids contain in their molecule both an acidic (− COOH) and a basic (− NH2) group. They can be visualized as existing in the form of a neutral zwitterion in which a hydrogen atom can pass between the carboxyl and amino groups. 

By the addition or subtraction of a hydrogen ion to or from the zwitterion, either the cation or anion form will be produced 

Thus, when OH ions are added to the solution of amino acid, they take up H+ from it to form water, and the anion is produced. If H+ ions are added, they are taken up by the zwitterion to produce the cation form. In practice, if NaOH is added, the salt H2N - CH- COONa would be formed. and the addition of HCl would result in the formation of amino acid hydrochloride.

Enzyme Kinetics

Enzymes are protein catalysts that, like all catalysts, speed up the rate of a chemical reaction without being used up in the process. They achieve their effect by temporarily binding to the substrate and, in doing so, lowering the activation energy needed to convert it to a product.

The rate at which an enzyme works is influenced by several factors, e.g.,

  • the concentration of substrate molecules (the more of them available, the quicker the enzyme molecules collide and bind with them). The concentration of substrate is designated [S] and is expressed in unit of molarity.
  • the temperature. As the temperature rises, molecular motion - and hence collisions between enzyme and substrate - speed up. But as enzymes are proteins, there is an upper limit beyond which the enzyme becomes denatured and ineffective.
  • the presence of inhibitors.
    • competitive inhibitors are molecules that bind to the same site as the substrate - preventing the substrate from binding as they do so - but are not changed by the enzyme.
    • noncompetitive inhibitors are molecules that bind to some other site on the enzyme reducing its catalytic power.
  • pH. The conformation of a protein is influenced by pH and as enzyme activity is crucially dependent on its conformation, its activity is likewise affected.

The study of the rate at which an enzyme works is called enzyme kinetics.

Explore by Exams